"Universal chiral partition function"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  grand partition function for n species of right moving (chiral) particles with fugacities z<br>
+
*  grand partition function for n species of right moving (chiral) particles with fugacities z
 
* N개의 보존 입자가 있고, 에너지의 단위를 <math>\hbar\omega=1</math>으로 하여, 에너지레벨이  <math>E_0,E_1,E_2,\cdots</math> 인 시스템을 생각하자.
 
* N개의 보존 입자가 있고, 에너지의 단위를 <math>\hbar\omega=1</math>으로 하여, 에너지레벨이  <math>E_0,E_1,E_2,\cdots</math> 인 시스템을 생각하자.
  
38번째 줄: 38번째 줄:
 
==special cases==
 
==special cases==
  
*  rank 1 case examples<br>
+
*  rank 1 case examples
*  Berkovich1998 and Wu's paper<br>
+
*  Berkovich1998 and Wu's paper
  
 
 
 
 
55번째 줄: 55번째 줄:
 
==related items==
 
==related items==
  
* [[fractional and exclusion statistics]]<br>
+
* [[fractional and exclusion statistics]]
* [[Fermionic summation formula]]<br>
+
* [[Fermionic summation formula]]
  
 
 
 
 
76번째 줄: 76번째 줄:
 
 
 
 
  
* [[2010년 books and articles]]<br>
+
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
89번째 줄: 89번째 줄:
 
==articles==
 
==articles==
  
* [http://arxiv.org/abs/hep-th/9903176 Exclusion statistics in conformal field theory and the UCPF for WZW models]<br>
+
* [http://arxiv.org/abs/hep-th/9903176 Exclusion statistics in conformal field theory and the UCPF for WZW models]
 
** Peter Bouwknegt, Leung Chim, David Ridout, 1999
 
** Peter Bouwknegt, Leung Chim, David Ridout, 1999
* [http://arxiv.org/abs/hep-th/9808171 Comment on the paper ``The universal chiral partition function for exclusion statistics'']<br>
+
* [http://arxiv.org/abs/hep-th/9808171 Comment on the paper ``The universal chiral partition function for exclusion statistics'']
**  K. Schoutens (University of Amsterdam)<br>
+
**  K. Schoutens (University of Amsterdam)
 
* Berkovich, A., 와/과B. M McCoy. 1998. “The universal chiral partition function for exclusion statistics”. <em>hep-th/9808013</em> (8월 4). http://arxiv.org/abs/hep-th/9808013
 
* Berkovich, A., 와/과B. M McCoy. 1998. “The universal chiral partition function for exclusion statistics”. <em>hep-th/9808013</em> (8월 4). http://arxiv.org/abs/hep-th/9808013
  
* [http://dx.doi.org/10.1103/PhysRevLett.73.922 Statistical distribution for generalized ideal gas of fractional-statistics particles]<br>
+
* [http://dx.doi.org/10.1103/PhysRevLett.73.922 Statistical distribution for generalized ideal gas of fractional-statistics particles]
 
** Y.S. Wu,, Phys. Rev. Letts. 73 (1994) 922
 
** Y.S. Wu,, Phys. Rev. Letts. 73 (1994) 922
  
101번째 줄: 101번째 줄:
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://pythagoras0.springnote.com/
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
+
[http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
121번째 줄: 121번째 줄:
 
==blogs==
 
==blogs==
  
*  구글 블로그 검색<br>
+
*  구글 블로그 검색
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=

2020년 11월 14일 (토) 02:26 판

introduction

  • grand partition function for n species of right moving (chiral) particles with fugacities z
  • N개의 보존 입자가 있고, 에너지의 단위를 \(\hbar\omega=1\)으로 하여, 에너지레벨이  \(E_0,E_1,E_2,\cdots\) 인 시스템을 생각하자.

N개의 입자가 있는 보존 시스템의 분배함수를  \(Z_B(N)\) 이라 두자.

큰 분배함수(grand partition function)는 \(Z_G=\sum_{n=0}^{\infty}Z_B(N)z^N\) 으로 쓸수 있다.

\(n_0,n_1,n_2,\cdots\) 은 각각 에너지가 \(E_0,E_1,E_2,\cdots\)인 입자의 수라고 하자.

 \(Z_B(N)=\sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)\) 이므로, 

\(Z_G=\sum_{N=0}^{\infty}Z_B(N)z^N=\sum_{N=0}^{\infty} \sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)z^N\)

\(=\prod_{r=0}^{\infty}\sum_{n_r=0}^{\infty} (ze^{-\beta E_r})^{n_r}=\prod_{r=0}\frac{1}{1-ze^{-\beta E_r}}\)

 

 

physical meaning

\(f_{A,B,C}(\tau)=\sum_{n\in \mathbb{Z}_{\geq 0}^r}\frac {q^{\frac{1}{2}n^{t}An+B^{t}\cdot n+C}} {(q)_{n_1}\cdots(q)_{n_r}}\)

A: energy shift due to interaction

B : energy shift due to (global) statistics

C : ground state Casimir energy

 

 

 

special cases

  • rank 1 case examples
  • Berkovich1998 and Wu's paper

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

 


 

 

articles

[1]

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links