"Universal chiral partition function"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
66번째 줄: 66번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.scholarpedia.org/
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
  
  
129번째 줄: 114번째 줄:
 
 
 
 
  
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:thesis]]
 
[[분류:thesis]]
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 11월 16일 (월) 03:13 판

introduction

  • grand partition function for n species of right moving (chiral) particles with fugacities z
  • N개의 보존 입자가 있고, 에너지의 단위를 \(\hbar\omega=1\)으로 하여, 에너지레벨이  \(E_0,E_1,E_2,\cdots\) 인 시스템을 생각하자.

N개의 입자가 있는 보존 시스템의 분배함수를  \(Z_B(N)\) 이라 두자.

큰 분배함수(grand partition function)는 \(Z_G=\sum_{n=0}^{\infty}Z_B(N)z^N\) 으로 쓸수 있다.

\(n_0,n_1,n_2,\cdots\) 은 각각 에너지가 \(E_0,E_1,E_2,\cdots\)인 입자의 수라고 하자.

 \(Z_B(N)=\sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)\) 이므로, 

\(Z_G=\sum_{N=0}^{\infty}Z_B(N)z^N=\sum_{N=0}^{\infty} \sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)z^N\)

\(=\prod_{r=0}^{\infty}\sum_{n_r=0}^{\infty} (ze^{-\beta E_r})^{n_r}=\prod_{r=0}\frac{1}{1-ze^{-\beta E_r}}\)

 

 

physical meaning

\(f_{A,B,C}(\tau)=\sum_{n\in \mathbb{Z}_{\geq 0}^r}\frac {q^{\frac{1}{2}n^{t}An+B^{t}\cdot n+C}} {(q)_{n_1}\cdots(q)_{n_r}}\)

A: energy shift due to interaction

B : energy shift due to (global) statistics

C : ground state Casimir energy

 

 

 

special cases

  • rank 1 case examples
  • Berkovich1998 and Wu's paper

 

 

history

 

 

related items

 

 

encyclopedia


 

 

articles

[1]

 

 

question and answers(Math Overflow)

 

 

blogs