"Teichmuller theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 18개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
 
+
  
 
+
  
 
==review of hyperbolic geometry==
 
==review of hyperbolic geometry==
  
*  horocycle<br>
+
*  horocycle
 
** http://en.wikipedia.org/wiki/Horocycle
 
** http://en.wikipedia.org/wiki/Horocycle
 
** http://web1.kcn.jp/hp28ah77/us15_horo.htm
 
** http://web1.kcn.jp/hp28ah77/us15_horo.htm
21번째 줄: 21번째 줄:
 
* A horocycle at marked point p is a set of points "equidistant" to p. In lift to H^2, looks like circle tangent to boundary at p.
 
* A horocycle at marked point p is a set of points "equidistant" to p. In lift to H^2, looks like circle tangent to boundary at p.
  
 
+
  
 
+
  
 
==Teichmuller space of a marked surface==
 
==Teichmuller space of a marked surface==
29번째 줄: 29번째 줄:
 
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
 
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
  
* are hyperbolic  (constant curvature -1)
+
* are hyperbolic  (constant curvature -1)
 
* have geodesic boundary at boundary of S
 
* have geodesic boundary at boundary of S
 
* local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
 
* local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
* have cusps at points in M
+
* have cusps at points in M
  
 
Considered up to diffeomorphism homotopic to identity.
 
Considered up to diffeomorphism homotopic to identity.
42번째 줄: 42번째 줄:
 
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
 
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
  
 
+
  
 
+
  
 
+
  
==history==
+
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
 +
* [[Moduli space of local systems and higher Teichmuller theory]]
 +
  
 
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
 
 
 
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==expositions==
 
==expositions==
 
+
* Norbert A'Campo, Lizhen Ji, Athanase Papadopoulos, On Grothendieck's construction of Teichmüller space, http://arxiv.org/abs/1603.02229v1
 +
* Matheus, Carlos. “Lecture Notes on the Dynamics of the Weil-Petersson Flow.” arXiv:1601.00690 [math], January 4, 2016. http://arxiv.org/abs/1601.00690.
 +
* Papadopoulos, Athanase, Vincent Alberge, and Weixu Su. “A Commentary on Teichm"uller’s Paper ‘Extremale Quasikonforme Abbildungen Und Quadratische Differentiale.’” arXiv:1511.01313 [math], November 4, 2015. http://arxiv.org/abs/1511.01313.
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==articles==
 
==articles==
 +
* Leonid Chekhov, Marta Mazzocco, Colliding holes in Riemann surfaces and quantum cluster algebras, arXiv:1509.07044 [math-ph], September 23 2015, http://arxiv.org/abs/1509.07044
 +
* Lien-Yung Kao, Pressure type metrics on spaces of metric graphs, arXiv:1604.03173 [math.DS], April 11 2016, http://arxiv.org/abs/1604.03173
 +
* Babak Modami, Asymptotics of a class of Weil-Petersson geodesics and divergence of Weil-Petersson geodesics, Algebr. Geom. Topol. 16 (2016) no.1, pp. 267-323, http://arxiv.org/abs/1401.3234v4
 +
* Antonakoudis, Stergios M. “The Complex Geometry of Teichm"uller Spaces and Bounded Symmetric Domains.” arXiv:1510.07340 [math], October 25, 2015. http://arxiv.org/abs/1510.07340.
 +
* Penner, R. C., and Anton M. Zeitlin. “Decorated Super-Teichm"uller Space.” arXiv:1509.06302 [hep-Th, Physics:math-Ph], September 21, 2015. http://arxiv.org/abs/1509.06302.
  
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==links==
 
  
 
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2400539 Q2400539]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'teichmüller'}, {'LEMMA': 'space'}]

2021년 2월 17일 (수) 02:32 기준 최신판

introduction

review of hyperbolic geometry



Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary





related items



expositions

articles

  • Leonid Chekhov, Marta Mazzocco, Colliding holes in Riemann surfaces and quantum cluster algebras, arXiv:1509.07044 [math-ph], September 23 2015, http://arxiv.org/abs/1509.07044
  • Lien-Yung Kao, Pressure type metrics on spaces of metric graphs, arXiv:1604.03173 [math.DS], April 11 2016, http://arxiv.org/abs/1604.03173
  • Babak Modami, Asymptotics of a class of Weil-Petersson geodesics and divergence of Weil-Petersson geodesics, Algebr. Geom. Topol. 16 (2016) no.1, pp. 267-323, http://arxiv.org/abs/1401.3234v4
  • Antonakoudis, Stergios M. “The Complex Geometry of Teichm"uller Spaces and Bounded Symmetric Domains.” arXiv:1510.07340 [math], October 25, 2015. http://arxiv.org/abs/1510.07340.
  • Penner, R. C., and Anton M. Zeitlin. “Decorated Super-Teichm"uller Space.” arXiv:1509.06302 [hep-Th, Physics:math-Ph], September 21, 2015. http://arxiv.org/abs/1509.06302.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'teichmüller'}, {'LEMMA': 'space'}]