"Rank 2 cluster algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 3명의 중간 판 53개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
  
 +
* cluster algebra defined by a 2x2 matrix
 +
* Laurent phenomenon
 +
* Positivity conjecture
 +
* finite classification
 +
 +
 +
 +
 +
 +
==cluster variables and exchange relations==
 +
* Fix two positive integers b and c.
 +
* Let <math>y_1</math> and <math>y_2</math> be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math>
 +
* Define a sequence <math>\{y_n\}</math> by
 +
:<math>
 +
y_{m-1}y_{m+1}=
 +
\begin{cases}
 +
y_m^b+1, & \text{if <math>m</math> is odd}\\
 +
y_m^c+1, & \text{if <math>m</math> is even} \\
 +
\end{cases}
 +
</math>
 +
* We call this ''''exchange relation''''
 +
* <math>y_m</math>'s are called ''''cluster variable''''
 +
* <math>\{y_i,y_{i+1}\}</math> "'''cluster'''"
 +
* <math>\{y_m^py_{m+1}^q\}</math> "'''cluster monomials'''" (supported on a given cluster)
 +
* Note : we can use the exchange relation any <math>y_m</math> in terms of arbitrary cluster <math>\{y_i,y_{i+1}\}</math> (rational expression)
 +
 +
 +
 +
 +
===matrix formulation===
 +
:<math>B=\begin{bmatrix} 0 & -b\\ c  &\,0 \end{bmatrix}</math>
 +
:<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 +
:<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 +
* <math>x_1x_1'=x_2^c+1</math> call <math>x_1'=x_3</math>
 +
* <math>x_2x_2'=x_1^b+1</math> call <math>x_2'=x_4</math>
 +
 +
 +
 +
 +
==observations==
 +
;theorem (FZ) : For any <math>b,c</math>, <math>y_m</math> is a Laurent polynomial.
 +
* Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
 +
* In this example, <math>bc\leq 3</math> iff the recurrence is periodic
 +
 +
 +
 +
 +
 +
==cluster algebra associated to Cartan matrices==
 +
* Finite type classification <math>A(b,c)</math> related to root systems of Cartan matrix
 +
:<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 +
* Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>
 +
* when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]]
 +
* <math>bc=1, h=2</math>
 +
* <math>bc=2, h=4</math>
 +
* <math>bc=3, h=6</math>
 +
* <math>bc\geq 4, h=\infty</math>
 +
* If <math>bc\geq 4</math>, all <math>y_m</math> are distinct
 +
 +
 +
==algebraic structure==
 +
* By "Laurent phenomenon" each element in <math>A(b,c)</math> can be uniquely expressed as Laurent polynomial in <math>y_m</math> and <math>y_{m+1}</math> for any <math>m</math>
 +
;theorem (Berenstein, Fomin and Zelevinsky) :
 +
:<math>A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math>
 +
* standard monomial basis : the following set  is a <math>\mathbb{Z}</math>-basis of <math>A(b,c)</math>
 +
:<math>\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}</math>
 +
* Here support of any such monomial is
 +
:<math>\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}</math>
 +
* <math>A(b,c)</math> is finitely generated. In fact,
 +
:<math>A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle</math>
 +
 +
 +
 +
==related items==
 +
* [[Rank 2 cluster algebra examples]]
 +
 +
 +
==articles==
 +
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082.
 +
 +
[[분류:cluster algebra]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q944095 Q944095]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'kaluza'}, {'OP': '*'}, {'LOWER': 'klein'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 03:01 기준 최신판

introduction

  • cluster algebra defined by a 2x2 matrix
  • Laurent phenomenon
  • Positivity conjecture
  • finite classification



cluster variables and exchange relations

  • Fix two positive integers b and c.
  • Let \(y_1\) and \(y_2\) be variable in the field \(F=\mathbb{Q}(y_1,y_2)\)
  • Define a sequence \(\{y_n\}\) by

\[ y_{m-1}y_{m+1}= \begin{cases} y_m^b+1, & \text{if \(m\] is odd}\\

y_m^c+1, & \text{if <math>m\) is even} \\ 

\end{cases} </math>

  • We call this 'exchange relation'
  • \(y_m\)'s are called 'cluster variable'
  • \(\{y_i,y_{i+1}\}\) "cluster"
  • \(\{y_m^py_{m+1}^q\}\) "cluster monomials" (supported on a given cluster)
  • Note : we can use the exchange relation any \(y_m\) in terms of arbitrary cluster \(\{y_i,y_{i+1}\}\) (rational expression)



matrix formulation

\[B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\] \[\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\] \[\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\]

  • \(x_1x_1'=x_2^c+1\) call \(x_1'=x_3\)
  • \(x_2x_2'=x_1^b+1\) call \(x_2'=x_4\)



observations

theorem (FZ)
For any \(b,c\), \(y_m\) is a Laurent polynomial.
  • Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
  • In this example, \(bc\leq 3\) iff the recurrence is periodic



cluster algebra associated to Cartan matrices

  • Finite type classification \(A(b,c)\) related to root systems of Cartan matrix

\[ \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}\]

  • Say \(A(b,c)\) is of finite/affine/indefinite type if \(bc\leq 3\), \(bc=4\), \(bc>4\)
  • when \(bc\leq 3\), \(y_m=y_n\) if and only if \(m\equiv n \mod (h+2)\) where h is Coxeter number
  • \(bc=1, h=2\)
  • \(bc=2, h=4\)
  • \(bc=3, h=6\)
  • \(bc\geq 4, h=\infty\)
  • If \(bc\geq 4\), all \(y_m\) are distinct


algebraic structure

  • By "Laurent phenomenon" each element in \(A(b,c)\) can be uniquely expressed as Laurent polynomial in \(y_m\) and \(y_{m+1}\) for any \(m\)
theorem (Berenstein, Fomin and Zelevinsky)

\[A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]\]

  • standard monomial basis : the following set is a \(\mathbb{Z}\)-basis of \(A(b,c)\)

\[\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}\]

  • Here support of any such monomial is

\[\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}\]

  • \(A(b,c)\) is finitely generated. In fact,

\[A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle\]


related items


articles

  • [SZ2003]Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kaluza'}, {'OP': '*'}, {'LOWER': 'klein'}, {'LEMMA': 'theory'}]