"Rank 2 cluster algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
6번째 줄: 6번째 줄:
 
* finite classification
 
* finite classification
  
 
+
  
 
+
  
 
==cluster variables and exchange relations==
 
==cluster variables and exchange relations==
 
* Fix two positive integers b and c.
 
* Fix two positive integers b and c.
 
* Let <math>y_1</math> and <math>y_2</math> be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math>
 
* Let <math>y_1</math> and <math>y_2</math> be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math>
* Define a sequence <math>\{y_n\}</math> by
+
* Define a sequence <math>\{y_n\}</math> by
 
:<math>
 
:<math>
 
y_{m-1}y_{m+1}=
 
y_{m-1}y_{m+1}=
28번째 줄: 28번째 줄:
  
  
 
+
  
 
===matrix formulation===
 
===matrix formulation===
34번째 줄: 34번째 줄:
 
:<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
:<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
:<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
:<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
* <math>x_1x_1'=x_2^c+1</math> call <math>x_1'=x_3</math>
+
* <math>x_1x_1'=x_2^c+1</math> call <math>x_1'=x_3</math>
* <math>x_2x_2'=x_1^b+1</math> call <math>x_2'=x_4</math>
+
* <math>x_2x_2'=x_1^b+1</math> call <math>x_2'=x_4</math>
  
  
 
+
  
 
==observations==
 
==observations==
 
;theorem (FZ) : For any <math>b,c</math>, <math>y_m</math> is a Laurent polynomial.
 
;theorem (FZ) : For any <math>b,c</math>, <math>y_m</math> is a Laurent polynomial.
* Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
+
* Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
* In this example, <math>bc\leq 3</math> iff the recurrence is periodic
+
* In this example, <math>bc\leq 3</math> iff the recurrence is periodic
  
 
+
  
 
+
  
 
==cluster algebra associated to Cartan matrices==
 
==cluster algebra associated to Cartan matrices==
53번째 줄: 53번째 줄:
 
:<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 
:<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 
* Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>  
 
* Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>  
* when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]]
+
* when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]]
 
* <math>bc=1, h=2</math>
 
* <math>bc=1, h=2</math>
 
* <math>bc=2, h=4</math>
 
* <math>bc=2, h=4</math>
59번째 줄: 59번째 줄:
 
* <math>bc\geq 4, h=\infty</math>
 
* <math>bc\geq 4, h=\infty</math>
 
* If <math>bc\geq 4</math>, all <math>y_m</math> are distinct
 
* If <math>bc\geq 4</math>, all <math>y_m</math> are distinct
 
+
  
 
==algebraic structure==
 
==algebraic structure==
65번째 줄: 65번째 줄:
 
;theorem (Berenstein, Fomin and Zelevinsky) :
 
;theorem (Berenstein, Fomin and Zelevinsky) :
 
:<math>A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math>
 
:<math>A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math>
* standard monomial basis : the following set  is a <math>\mathbb{Z}</math>-basis of <math>A(b,c)</math>
+
* standard monomial basis : the following set  is a <math>\mathbb{Z}</math>-basis of <math>A(b,c)</math>
 
:<math>\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}</math>
 
:<math>\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}</math>
 
* Here support of any such monomial is  
 
* Here support of any such monomial is  
72번째 줄: 72번째 줄:
 
:<math>A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle</math>
 
:<math>A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle</math>
  
 
+
  
 
==related items==
 
==related items==
* [[Rank 2 cluster algebra examples]] 
+
* [[Rank 2 cluster algebra examples]]  
 
+
  
 
==articles==
 
==articles==
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082. 
+
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082.  
  
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]
85번째 줄: 85번째 줄:
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q944095 Q944095]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'kaluza'}, {'OP': '*'}, {'LOWER': 'klein'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 03:01 기준 최신판

introduction

  • cluster algebra defined by a 2x2 matrix
  • Laurent phenomenon
  • Positivity conjecture
  • finite classification



cluster variables and exchange relations

  • Fix two positive integers b and c.
  • Let \(y_1\) and \(y_2\) be variable in the field \(F=\mathbb{Q}(y_1,y_2)\)
  • Define a sequence \(\{y_n\}\) by

\[ y_{m-1}y_{m+1}= \begin{cases} y_m^b+1, & \text{if \(m\] is odd}\\

y_m^c+1, & \text{if <math>m\) is even} \\ 

\end{cases} </math>

  • We call this 'exchange relation'
  • \(y_m\)'s are called 'cluster variable'
  • \(\{y_i,y_{i+1}\}\) "cluster"
  • \(\{y_m^py_{m+1}^q\}\) "cluster monomials" (supported on a given cluster)
  • Note : we can use the exchange relation any \(y_m\) in terms of arbitrary cluster \(\{y_i,y_{i+1}\}\) (rational expression)



matrix formulation

\[B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\] \[\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\] \[\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\]

  • \(x_1x_1'=x_2^c+1\) call \(x_1'=x_3\)
  • \(x_2x_2'=x_1^b+1\) call \(x_2'=x_4\)



observations

theorem (FZ)
For any \(b,c\), \(y_m\) is a Laurent polynomial.
  • Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
  • In this example, \(bc\leq 3\) iff the recurrence is periodic



cluster algebra associated to Cartan matrices

  • Finite type classification \(A(b,c)\) related to root systems of Cartan matrix

\[ \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}\]

  • Say \(A(b,c)\) is of finite/affine/indefinite type if \(bc\leq 3\), \(bc=4\), \(bc>4\)
  • when \(bc\leq 3\), \(y_m=y_n\) if and only if \(m\equiv n \mod (h+2)\) where h is Coxeter number
  • \(bc=1, h=2\)
  • \(bc=2, h=4\)
  • \(bc=3, h=6\)
  • \(bc\geq 4, h=\infty\)
  • If \(bc\geq 4\), all \(y_m\) are distinct


algebraic structure

  • By "Laurent phenomenon" each element in \(A(b,c)\) can be uniquely expressed as Laurent polynomial in \(y_m\) and \(y_{m+1}\) for any \(m\)
theorem (Berenstein, Fomin and Zelevinsky)

\[A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]\]

  • standard monomial basis : the following set is a \(\mathbb{Z}\)-basis of \(A(b,c)\)

\[\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}\]

  • Here support of any such monomial is

\[\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}\]

  • \(A(b,c)\) is finitely generated. In fact,

\[A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle\]


related items


articles

  • [SZ2003]Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kaluza'}, {'OP': '*'}, {'LOWER': 'klein'}, {'LEMMA': 'theory'}]