"가우스의 보조정리(Gauss's lemma)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* [[이차잉여]]의 이론에서 중요한 역할 | * [[이차잉여]]의 이론에서 중요한 역할 | ||
− | * 홀수인 소수 | + | * 홀수인 소수 <math>p</math>와 <math>a\in (\mathbb{Z}/p\mathbb{Z})^\times</math>에 대하여 다음이 성립한다 |
:<math>\left(\frac{a}{p}\right)=(-1)^n</math> | :<math>\left(\frac{a}{p}\right)=(-1)^n</math> | ||
− | 여기서 | + | 여기서 <math>n</math>은 <math>a, 2a, 3a, \dots, \frac{p-1}{2}a \in (\mathbb{Z}/p\mathbb{Z})^\times</math> 의 값을 <math>\{1,2,\cdots,p-1\}</math> 에서 고려할때, <math>p/2</math>보다 큰 경우의 수 |
12번째 줄: | 12번째 줄: | ||
==최대정수함수를 이용한 표현== | ==최대정수함수를 이용한 표현== | ||
− | * 홀수인 소수 | + | * 홀수인 소수 <math>p</math>와 <math>(a,2p)=1</math>에 대하여 다음이 성립한다 |
− | :<math>\left(\frac{a}{p}\right)=(-1)^n</math> 이고, 여기서 :<math>n=\sum_{j=1}^{(p-1)/2}[\frac{ja}{p}]</math> | + | :<math>\left(\frac{a}{p}\right)=(-1)^n</math> 이고, 여기서 :<math>n=\sum_{j=1}^{(p-1)/2}[\frac{ja}{p}]</math> <math>[\cdot]</math>는 [[최대정수함수 (가우스함수)]] |
77번째 줄: | 77번째 줄: | ||
[[분류:초등정수론]] | [[분류:초등정수론]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2526246 Q2526246] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'gauss'}, {'LOWER': "'s"}, {'LEMMA': 'lemma'}] | ||
+ | * [{'LOWER': 'gauss'}, {'LOWER': "'"}, {'LEMMA': 'lemma'}] |
2021년 2월 17일 (수) 04:57 기준 최신판
개요
- 이차잉여의 이론에서 중요한 역할
- 홀수인 소수 \(p\)와 \(a\in (\mathbb{Z}/p\mathbb{Z})^\times\)에 대하여 다음이 성립한다
\[\left(\frac{a}{p}\right)=(-1)^n\] 여기서 \(n\)은 \(a, 2a, 3a, \dots, \frac{p-1}{2}a \in (\mathbb{Z}/p\mathbb{Z})^\times\) 의 값을 \(\{1,2,\cdots,p-1\}\) 에서 고려할때, \(p/2\)보다 큰 경우의 수
최대정수함수를 이용한 표현
- 홀수인 소수 \(p\)와 \((a,2p)=1\)에 대하여 다음이 성립한다
\[\left(\frac{a}{p}\right)=(-1)^n\] 이고, 여기서 \[n=\sum_{j=1}^{(p-1)/2}[\frac{ja}{p}]\] \([\cdot]\)는 최대정수함수 (가우스함수)
아이젠슈타인
\[\left(\frac{a}{p}\right)=\prod_{n=1}^{(p-1)/2}\frac{\sin{(2\pi an/p)}}{\sin{(2\pi n/p)}}\]
역사
메모
- http://www.rose-hulman.edu/Class/ma/holden/Home/Class/Umastr/Math471/qrl-rev/
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
메타데이터
위키데이터
- ID : Q2526246
Spacy 패턴 목록
- [{'LOWER': 'gauss'}, {'LOWER': "'s"}, {'LEMMA': 'lemma'}]
- [{'LOWER': 'gauss'}, {'LOWER': "'"}, {'LEMMA': 'lemma'}]