"역삼각함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
*  사인/아크사인함수 덧셈정리의 적분표현:<math>\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2</math>:<math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math>:<math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math>
 +
*  탄젠트/아크탄젠트 함수 덧셈정리의 적분표현:<math>\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}</math>:<math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math>:<math>\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math> 
 +
 +
<math>x>0</math> 일 때,
 +
 +
<math>\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}</math>
 +
 +
 +
 +
<math>2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}</math>
 +
 +
<math>\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}</math>
 +
 +
 +
 +
 +
 +
 +
 +
==역사==
 +
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=inverse+tangent
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=arctangent http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[대수적 함수와 아벨적분]]
 +
* [[중심이항계수(central binomial coefficient)]]
 +
 +
 +
 +
 +
 +
==수학용어번역==
 +
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxT3d5dGR5X1dIVDQ/edit
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
==블로그==
 +
 +
 +
 +
[[분류:삼각함수]]

2020년 12월 28일 (월) 03:44 기준 최신판

개요

  • 사인/아크사인함수 덧셈정리의 적분표현\[\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2\]\[\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})\]\[\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx \]
  • 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현\[\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\]\[\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\]\[\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}\]

\(x>0\) 일 때,

\(\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}\)


\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)

\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\)




역사



메모

관련된 항목들



수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료












블로그