"Kostant partition function"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 3명의 중간 판 25개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* Kostant’s  partition  function  counts  the  number  of  ways  to  represent  a  particular  vector (weight) as a nonnegative integral sum of positive roots of a Lie algebra. 
 +
* For a given weight the q-analog of Kostant’s partition function is a polynomial where the coefficient of <math>q^k</math> is the number of ways the weight can be written as a nonnegative integral sum of exactly <math>k</math> positive roots.
 +
* Define functions <math>{\mathcal P}_q(\mu)</math> by the equation
 +
\[ \frac{1}{\prod_{\alpha\in \Delta_+}(1-qe^\alpha )}=:\sum_{\mu\in Q_+}
 +
{\mathcal P}_q(\mu)e^\mu\ . \]
 +
* Then <math>\mathcal P_q(\mu)</math> is a polynomial in <math>q</math> with <math>\deg\mathcal P_q(\mu)=\mathsf{ht}(\mu)</math> and
 +
<math>\mu \mapsto {\mathcal P}(\mu):={\mathcal P}_q(\mu)\vert_{q=1}</math> is the usual Kostant's partition
 +
function. For <math>\lambda,\mu\in P</math>,
 +
Lusztig \cite[(9.4)]{Lus} (see also \cite[(1.2)]{kato}) introduced a fundamental <math>q</math>-analogue of weight multipliciities <math>m_{\mu}^{\lambda}</math>:
 +
:<math>
 +
\mathfrak{M}_\lambda^\mu(q)=\sum_{w\in W}\ell(w){\mathcal P}_q(w(\lambda+\rho)-(\mu+\rho)) .
 +
</math>
  
 +
===properties===
 +
* <math>\mathfrak{M}_\lambda^\mu(q)\equiv 0</math> unless <math>\lambda \succcurlyeq \mu</math>;
 +
* <math>\lambda\succcurlyeq\mu</math>, then <math>\mathfrak{M}_\lambda^\mu(q)</math> is a monic polynomial and <math>\deg\mathfrak{M}_\lambda^\mu(q)=\mathsf{ht}(\lambda-\mu)</math>; therefore, <math>\mathfrak{M}_\lambda^\lambda(q)\equiv 1</math>;
 +
* <math>\mathfrak{M}_\lambda^\mu(1)=m_\lambda^\mu</math>.
 +
 +
 +
==history==
 +
* Kostant’s partition function was introduced and studied by F.A. Berezin and I.M. Gelfand (Proc. Moscow Math. Soc. 5 (1956), 311-351) for the case <math>g=sl(n)</math>, and by B. Kostant (Trans. Amer. Math. Soc., 93 (1959), 53-73) for arbitrary semi–simple finite dimensional Lie algebra <math>g</math>
 +
 +
 +
 +
==computational resource==
 +
* https://drive.google.com/file/d/0B8XXo8Tve1cxR1VOVW5CMG5DV2c/view
 +
* Kolman, B., and R. Beck. “Computers in Lie Algebras. I: Calculation of Inner Multiplicities.” SIAM Journal on Applied Mathematics 25, no. 2 (September 1, 1973): 300–312. doi:10.1137/0125032.
 +
 +
==articles==
 +
* [http://www-math.mit.edu/~karola/ Flow polytopes and the Kostant partition function]
 +
* Harris, Pamela E., Erik Insko, and Mohamed Omar. “The <math>q</math>-Analog of Kostant’s Partition Function and the Highest Root of the Classical Lie Algebras.” arXiv:1508.07934 [math], August 31, 2015. http://arxiv.org/abs/1508.07934.
 +
* Panyushev, Dmitri I. “On Lusztig’s <math>q</math>-Analogues of All Weight Multiplicities of a Representation.” arXiv:1406.1453 [Math], June 5, 2014. http://arxiv.org/abs/1406.1453.
 +
* lecouvey, Cedric. “Kostka-Foulkes Polynomials Cyclage Graphs and Charge Statistic for the Root System <math>C_{n}</math>.” arXiv:math/0310370, October 23, 2003. http://arxiv.org/abs/math/0310370.
 +
* Lansky, Joshua M. “A q-Analog of Freudenthal’s Weight Multiplicity Formula.” Indagationes Mathematicae 11, no. 1 (January 1, 2000): 87–94. doi:10.1016/S0019-3577(00)88576-6.
 +
* Broer, Bram. “Line Bundles on the Cotangent Bundle of the Flag Variety.” Inventiones Mathematicae 113, no. 1 (n.d.): 1–20. doi:10.1007/BF01244299.
 +
* Gupta, R. K. “Characters and the q-Analog of Weight Multiplicity.” Journal of the London Mathematical Society s2-36, no. 1 (August 1, 1987): 68–76. doi:10.1112/jlms/s2-36.1.68.
 +
* Kato, Shin-ichi. “Spherical Functions and A q-analogue of Kostant's weight multiplicity formula.” Inventiones Mathematicae 66, no. 3 (n.d.): 461–68. doi:10.1007/BF01389223.
 +
 +
 +
[[분류:개인노트]]
 +
[[분류:cluster algebra]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6433478 Q6433478]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'kostant'}, {'LOWER': 'partition'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 02:41 기준 최신판

introduction

  • Kostant’s partition function counts the number of ways to represent a particular vector (weight) as a nonnegative integral sum of positive roots of a Lie algebra.
  • For a given weight the q-analog of Kostant’s partition function is a polynomial where the coefficient of \(q^k\) is the number of ways the weight can be written as a nonnegative integral sum of exactly \(k\) positive roots.
  • Define functions \({\mathcal P}_q(\mu)\) by the equation

\[ \frac{1}{\prod_{\alpha\in \Delta_+}(1-qe^\alpha )}=:\sum_{\mu\in Q_+} {\mathcal P}_q(\mu)e^\mu\ . \]

  • Then \(\mathcal P_q(\mu)\) is a polynomial in \(q\) with \(\deg\mathcal P_q(\mu)=\mathsf{ht}(\mu)\) and

\(\mu \mapsto {\mathcal P}(\mu):={\mathcal P}_q(\mu)\vert_{q=1}\) is the usual Kostant's partition function. For \(\lambda,\mu\in P\), Lusztig \cite[(9.4)]{Lus} (see also \cite[(1.2)]{kato}) introduced a fundamental \(q\)-analogue of weight multipliciities \(m_{\mu}^{\lambda}\): \[ \mathfrak{M}_\lambda^\mu(q)=\sum_{w\in W}\ell(w){\mathcal P}_q(w(\lambda+\rho)-(\mu+\rho)) . \]

properties

  • \(\mathfrak{M}_\lambda^\mu(q)\equiv 0\) unless \(\lambda \succcurlyeq \mu\);
  • \(\lambda\succcurlyeq\mu\), then \(\mathfrak{M}_\lambda^\mu(q)\) is a monic polynomial and \(\deg\mathfrak{M}_\lambda^\mu(q)=\mathsf{ht}(\lambda-\mu)\); therefore, \(\mathfrak{M}_\lambda^\lambda(q)\equiv 1\);
  • \(\mathfrak{M}_\lambda^\mu(1)=m_\lambda^\mu\).


history

  • Kostant’s partition function was introduced and studied by F.A. Berezin and I.M. Gelfand (Proc. Moscow Math. Soc. 5 (1956), 311-351) for the case \(g=sl(n)\), and by B. Kostant (Trans. Amer. Math. Soc., 93 (1959), 53-73) for arbitrary semi–simple finite dimensional Lie algebra \(g\)


computational resource

articles

  • Flow polytopes and the Kostant partition function
  • Harris, Pamela E., Erik Insko, and Mohamed Omar. “The \(q\)-Analog of Kostant’s Partition Function and the Highest Root of the Classical Lie Algebras.” arXiv:1508.07934 [math], August 31, 2015. http://arxiv.org/abs/1508.07934.
  • Panyushev, Dmitri I. “On Lusztig’s \(q\)-Analogues of All Weight Multiplicities of a Representation.” arXiv:1406.1453 [Math], June 5, 2014. http://arxiv.org/abs/1406.1453.
  • lecouvey, Cedric. “Kostka-Foulkes Polynomials Cyclage Graphs and Charge Statistic for the Root System \(C_{n}\).” arXiv:math/0310370, October 23, 2003. http://arxiv.org/abs/math/0310370.
  • Lansky, Joshua M. “A q-Analog of Freudenthal’s Weight Multiplicity Formula.” Indagationes Mathematicae 11, no. 1 (January 1, 2000): 87–94. doi:10.1016/S0019-3577(00)88576-6.
  • Broer, Bram. “Line Bundles on the Cotangent Bundle of the Flag Variety.” Inventiones Mathematicae 113, no. 1 (n.d.): 1–20. doi:10.1007/BF01244299.
  • Gupta, R. K. “Characters and the q-Analog of Weight Multiplicity.” Journal of the London Mathematical Society s2-36, no. 1 (August 1, 1987): 68–76. doi:10.1112/jlms/s2-36.1.68.
  • Kato, Shin-ichi. “Spherical Functions and A q-analogue of Kostant's weight multiplicity formula.” Inventiones Mathematicae 66, no. 3 (n.d.): 461–68. doi:10.1007/BF01389223.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kostant'}, {'LOWER': 'partition'}, {'LEMMA': 'function'}]