"P진 감마함수(p-adic gamma function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
  
 
+
<math>\Gamma_p(n)=(-1)^n\prod_{(i,p)=1}^{n-1} i</math>
  
 
 
 
 
37번째 줄: 37번째 줄:
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
  
 
+
* [[감마함수]]
  
 
 
 
 
69번째 줄: 69번째 줄:
 
* [http://www.springerlink.com/content/bq28602x02m17760/ p-adic gamma functions and their applications]<br>
 
* [http://www.springerlink.com/content/bq28602x02m17760/ p-adic gamma functions and their applications]<br>
 
** Jack Diamond, 1984
 
** Jack Diamond, 1984
* [[#]]
+
* [http://archive.numdam.org/ARCHIVE/GAU/GAU_1981-1982__9_3/GAU_1981-1982__9_3_A18_0/GAU_1981-1982__9_3_A18_0.pdf The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer]<br>
 +
** L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p
 
* [http://www.jstor.org/stable/1971226 Gauss Sums and the p-adic Γ-function]<br>
 
* [http://www.jstor.org/stable/1971226 Gauss Sums and the p-adic Γ-function]<br>
 
** Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581
 
** Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581
 +
*  The p-adic log gamma function and p-adic Euler constants<br>
 +
** J. Diamond, Trans. Amer. Math. Soc. 233 (1977), 321–337
 
* [http://hdl.handle.net/2261/6494 A p-adic analogue of the $\Gamma$-function]<br>
 
* [http://hdl.handle.net/2261/6494 A p-adic analogue of the $\Gamma$-function]<br>
 
** Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266
 
** Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266

2009년 11월 11일 (수) 17:42 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개

\(\Gamma_p(n)=(-1)^n\prod_{(i,p)=1}^{n-1} i\)

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그