"Springer correspondence"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
6번째 줄: | 6번째 줄: | ||
==expositions== | ==expositions== | ||
* Clausen, http://www.math.harvard.edu/theses/senior/clausen/clausen.pdf | * Clausen, http://www.math.harvard.edu/theses/senior/clausen/clausen.pdf | ||
+ | |||
+ | |||
+ | ==encyclopedia== | ||
+ | * http://en.wikipedia.org/wiki/Nilpotent_cone | ||
+ | * http://en.wikipedia.org/wiki/Springer_correspondence | ||
==articles== | ==articles== | ||
+ | * http://arxiv.org/abs/1507.00401 | ||
* Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471. | * Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471. | ||
* Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132. | * Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132. | ||
* Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343. | * Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343. | ||
* Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160. | * Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160. | ||
− | |||
− | |||
− | |||
− |
2015년 7월 2일 (목) 20:23 판
introduction
- The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra
- extend this to an equivalence between the triangulated category generated by the Springer perverse sheaves and the derived category of differential graded modules over a dg-ring related to the Weyl group
expositions
encyclopedia
articles
- http://arxiv.org/abs/1507.00401
- Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471.
- Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132.
- Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343.
- Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160.