"Springer correspondence"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Achar, Pramod N., Anthony Henderson, Daniel Juteau, and Simon Riche. “Modular Generalized Springer Correspondence: An Overview.” arXiv:1510.08962 [math], October 29, 2015. http://arxiv.org/abs/1510.08962.
 
* Clausen, http://www.math.harvard.edu/theses/senior/clausen/clausen.pdf
 
* Clausen, http://www.math.harvard.edu/theses/senior/clausen/clausen.pdf
 
  
 
==encyclopedia==
 
==encyclopedia==

2015년 11월 9일 (월) 06:10 판

introduction

  • The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra
  • extend this to an equivalence between the triangulated category generated by the Springer perverse sheaves and the derived category of differential graded modules over a dg-ring related to the Weyl group


expositions

encyclopedia


articles

  • Chen, Tsao-Hsien, Kari Vilonen, and Ting Xue. “Hessenberg Varieties, Intersections of Quadrics, and the Springer Correspondence.” arXiv:1511.00617 [math], November 2, 2015. http://arxiv.org/abs/1511.00617.
  • Achar, Pramod N., Anthony Henderson, Daniel Juteau, and Simon Riche. “Modular Generalized Springer Correspondence III: Exceptional Groups.” arXiv:1507.00401 [math], July 1, 2015. http://arxiv.org/abs/1507.00401.
  • Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471.
  • Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132.
  • Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343.
  • Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160.