"Teichmuller theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/7151451">triangulated surfaces and cluster algebra</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>review of hyperbolic geometry</h5>
 +
 +
*  horocycle<br>
 +
** http://en.wikipedia.org/wiki/Horocycle
 +
** http://web1.kcn.jp/hp28ah77/us15_horo.htm
 +
* exponentiated hyperbolic distances between horocycles drawn around vertices of a polygon with geodesic sides and cusps at the vertices
 +
* lamination
 +
* shear coordinates
 +
* lambda length
 +
* http://moniker.name/worldmaking/?p=744
 +
* http://orion.math.iastate.edu/dept/thesisarchive/MSCC/OLearyMSCCSS06.pdf
 +
 +
 
  
 
 
 
 
37번째 줄: 55번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
 
 +
 +
<h5>decorated Teichmuller space</h5>
  
 
\def decorated Teichmuller space \tilde{T}(S,M) is
 
\def decorated Teichmuller space \tilde{T}(S,M) is
70번째 줄: 94번째 줄:
  
 
 
 
 
 +
 +
<h5>shear coordinate</h5>
  
 
 
 
 
  
<h5>shear coordinate</h5>
+
* for tropical version, see [[lamination and tropical shear coordinates on a marked surface|lamination and shear coordinates on a marked surface]]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>history</h5>
 +
 
 +
 
 +
 
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>related items</h5>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 +
 
 +
 
 +
 
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.scholarpedia.org/
 +
* [http://eom.springer.de/ http://eom.springer.de]
 +
* http://www.proofwiki.org/wiki/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>books</h5>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
* [[2011년 books and articles]]
 +
* http://library.nu/search?q=
 +
* http://library.nu/search?q=
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 
  
 
 
 
 
 +
 +
<h5>expositions</h5>
  
 
 
 
 
  
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 +
 +
 
 +
 +
*   <br>
 +
* http://www.ams.org/mathscinet
 +
* http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>question and answers(Math Overflow)</h5>
 +
 +
 
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://math.stackexchange.com/search?q=
 +
* http://physics.stackexchange.com/search?q=
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>blogs</h5>
 +
 +
 
 +
 +
*  구글 블로그 검색<br>
 +
**  http://blogsearch.google.com/blogsearch?q=<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>experts on the field</h5>
 +
 +
 
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>links</h5>
 +
 +
 
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2011년 8월 13일 (토) 08:06 판

introduction

 

 

review of hyperbolic geometry

 

 

 

Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic  (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary

 

 

\def

An ideal triangle in (S,M) is a triangle with vertices at M, whose sides are geodesics.

 

\def

A horocycle at marked point p is a set of points "equidistant" to p. In lift to H^2, looks like circle tangent to boundary at p.

 

 

 

decorated Teichmuller space

\def decorated Teichmuller space \tilde{T}(S,M) is

  • a point in T(S,M)
  • a choic of horocycle around each cusp from M

\def (Penner) For a arc A in (S,M) and \Sigma\in\tilde{T}(S,M),

the length of A with respect to \Sigma is

l_{\Sigma(A) = length on geodesic representative of A between intersections with horocycles around ends. (negative if 2 horocycles intersect) 

 

The \lambda - length is \lambda_{\Sigma}(A) : = e^{l_{\Sigma}(A)/2}

Note  :  \lambda_{\Sigma}(A) in \mathbb{R}_{> 0 }

 

\prop

In an ideal quadrilateral, the Ptolemy relation holds.

 

\thm (Penner)

For any triangulation (A_{i})

 

 

shear coordinate

 

 

 

history

 

 

 

 

 

 

related items

 

 

 

 

 

encyclopedia

 

 

 

 

 

 

books

 

 

 

 

 

 

 

 

expositions

 

 

 

 

 

articles

 

 

 

 

 

 

question and answers(Math Overflow)

 

 

 

 

 

 

 

 

blogs

 

 

 

 

 

 

experts on the field

 

 

 

 

 

 

links