"Teichmuller theory"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 위치를 <a href="/pages/7151451">triangulated surfaces and cluster algebra</a>페이지로 이동하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>review of hyperbolic geometry</h5> | ||
+ | |||
+ | * horocycle<br> | ||
+ | ** http://en.wikipedia.org/wiki/Horocycle | ||
+ | ** http://web1.kcn.jp/hp28ah77/us15_horo.htm | ||
+ | * exponentiated hyperbolic distances between horocycles drawn around vertices of a polygon with geodesic sides and cusps at the vertices | ||
+ | * lamination | ||
+ | * shear coordinates | ||
+ | * lambda length | ||
+ | * http://moniker.name/worldmaking/?p=744 | ||
+ | * http://orion.math.iastate.edu/dept/thesisarchive/MSCC/OLearyMSCCSS06.pdf | ||
+ | |||
+ | |||
37번째 줄: | 55번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>decorated Teichmuller space</h5> | ||
\def decorated Teichmuller space \tilde{T}(S,M) is | \def decorated Teichmuller space \tilde{T}(S,M) is | ||
70번째 줄: | 94번째 줄: | ||
+ | |||
+ | <h5>shear coordinate</h5> | ||
− | <h5> | + | * for tropical version, see [[lamination and tropical shear coordinates on a marked surface|lamination and shear coordinates on a marked surface]] |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * [http://eom.springer.de/ http://eom.springer.de] | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | * [[2011년 books and articles]] | ||
+ | * http://library.nu/search?q= | ||
+ | * http://library.nu/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos | * [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * <br> | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://math.stackexchange.com/search?q= | ||
+ | * http://physics.stackexchange.com/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
2011년 8월 13일 (토) 08:06 판
introduction
review of hyperbolic geometry
- horocycle
- exponentiated hyperbolic distances between horocycles drawn around vertices of a polygon with geodesic sides and cusps at the vertices
- lamination
- shear coordinates
- lambda length
- http://moniker.name/worldmaking/?p=744
- http://orion.math.iastate.edu/dept/thesisarchive/MSCC/OLearyMSCCSS06.pdf
Teichmuller space of a marked surface
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
- are hyperbolic (constant curvature -1)
- have geodesic boundary at boundary of S
- local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
- have cusps at points in M
Considered up to diffeomorphism homotopic to identity.
Facts
(1) T(S,M) contractible
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
\def
An ideal triangle in (S,M) is a triangle with vertices at M, whose sides are geodesics.
\def
A horocycle at marked point p is a set of points "equidistant" to p. In lift to H^2, looks like circle tangent to boundary at p.
decorated Teichmuller space
\def decorated Teichmuller space \tilde{T}(S,M) is
- a point in T(S,M)
- a choic of horocycle around each cusp from M
\def (Penner) For a arc A in (S,M) and \Sigma\in\tilde{T}(S,M),
the length of A with respect to \Sigma is
l_{\Sigma(A) = length on geodesic representative of A between intersections with horocycles around ends. (negative if 2 horocycles intersect)
The \lambda - length is \lambda_{\Sigma}(A) : = e^{l_{\Sigma}(A)/2}
Note : \lambda_{\Sigma}(A) in \mathbb{R}_{> 0 }
\prop
In an ideal quadrilateral, the Ptolemy relation holds.
\thm (Penner)
For any triangulation (A_{i})
shear coordinate
- for tropical version, see lamination and shear coordinates on a marked surface
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
- Introduction to Teichmüller theory, old and new, Athanase Papadopoulos
articles
-
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field
links