"Zeta integral"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
==introduction==
 
* many zeta integrals in the theory of automorphic forms can be produced or explained by appropriate choices of a Schwartz space of test functions on a spherical homogeneous space, which are in turn dictated by the geometry of affine spherical embeddings
 
  
 
==local zeta integral==
 
* quasicharacter on $F_v^{\times}$ are of the form $\omega_s(x)=\omega(x)|x|^s$ where $\omega$ is unitary
 
* $\omega$ : unitary, $s\in \mathbb{C}$
 
* the following converges for $\Re(s)>0$
 
$$
 
\zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x
 
$$
 
* analytic continuation of $Z(f,\omega,s)$
 
* functional equation
 
 
==global zeta integral==
 
===Riemann zeta function===
 
* $f\in \mathcal{S}(\mathbb{A})$
 
* define
 
$$
 
\zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x
 
$$
 
;thm
 
The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$.
 
This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation
 
One has
 
$$
 
\zeta(f,s)=\zeta(\widehat{f},1-s)
 
$$
 
 
 
===Dirichlet L-functions===
 
* $f\in \mathcal{S}(\mathbb{A})$
 
* $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
 
* define
 
$$
 
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
 
$$
 
;thm
 
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has
 
$$
 
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
 
$$
 
 
==articles==
 
* http://arxiv.org/abs/1509.04835
 
* Li, Wen-Wei. “Zeta Integrals, Schwartz Spaces and Local Functional Equations.” arXiv:1508.05594 [math], August 23, 2015. http://arxiv.org/abs/1508.05594.
 
 
 
[[분류:L-functions and L-values]]
 

2020년 11월 13일 (금) 09:55 판