"Rank 2 cluster algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
12번째 줄: | 12번째 줄: | ||
==cluster variables and exchange relations== | ==cluster variables and exchange relations== | ||
* Fix two positive integers b and c. | * Fix two positive integers b and c. | ||
− | * Let | + | * Let <math>y_1</math> and <math>y_2</math> be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math> |
− | * Define a sequence | + | * Define a sequence <math>\{y_n\}</math> by |
− | + | :<math> | |
y_{m-1}y_{m+1}= | y_{m-1}y_{m+1}= | ||
\begin{cases} | \begin{cases} | ||
− | y_m^b+1, & \text{if | + | y_m^b+1, & \text{if </math>m<math> is odd}\\ |
− | y_m^c+1, & \text{if | + | y_m^c+1, & \text{if </math>m<math> is even} \\ |
\end{cases} | \end{cases} | ||
− | + | </math> | |
* We call this ''''exchange relation'''' | * We call this ''''exchange relation'''' | ||
* <math>y_m</math>'s are called ''''cluster variable'''' | * <math>y_m</math>'s are called ''''cluster variable'''' | ||
* <math>\{y_i,y_{i+1}\}</math> "'''cluster'''" | * <math>\{y_i,y_{i+1}\}</math> "'''cluster'''" | ||
* <math>\{y_m^py_{m+1}^q\}</math> "'''cluster monomials'''" (supported on a given cluster) | * <math>\{y_m^py_{m+1}^q\}</math> "'''cluster monomials'''" (supported on a given cluster) | ||
− | * Note : we can use the exchange relation any | + | * Note : we can use the exchange relation any <math>y_m</math> in terms of arbitrary cluster <math>\{y_i,y_{i+1}\}</math> (rational expression) |
34번째 줄: | 34번째 줄: | ||
:<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | :<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | ||
:<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | :<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | ||
− | * <math>x_1x_1'=x_2^c+1</math> call | + | * <math>x_1x_1'=x_2^c+1</math> call <math>x_1'=x_3</math> |
− | * <math>x_2x_2'=x_1^b+1</math> call | + | * <math>x_2x_2'=x_1^b+1</math> call <math>x_2'=x_4</math> |
41번째 줄: | 41번째 줄: | ||
==observations== | ==observations== | ||
− | ;theorem (FZ) : For any | + | ;theorem (FZ) : For any <math>b,c</math>, <math>y_m</math> is a Laurent polynomial. |
* Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have ) | * Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have ) | ||
* In this example, <math>bc\leq 3</math> iff the recurrence is periodic | * In this example, <math>bc\leq 3</math> iff the recurrence is periodic | ||
54번째 줄: | 54번째 줄: | ||
* Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math> | * Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math> | ||
* when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]] | * when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]] | ||
− | * | + | * <math>bc=1, h=2</math> |
− | * | + | * <math>bc=2, h=4</math> |
− | * | + | * <math>bc=3, h=6</math> |
− | * | + | * <math>bc\geq 4, h=\infty</math> |
− | * If | + | * If <math>bc\geq 4</math>, all <math>y_m</math> are distinct |
==algebraic structure== | ==algebraic structure== | ||
− | * By "Laurent phenomenon" each element in | + | * By "Laurent phenomenon" each element in <math>A(b,c)</math> can be uniquely expressed as Laurent polynomial in <math>y_m</math> and <math>y_{m+1}</math> for any <math>m</math> |
;theorem (Berenstein, Fomin and Zelevinsky) : | ;theorem (Berenstein, Fomin and Zelevinsky) : | ||
:<math>A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math> | :<math>A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math> |
2020년 11월 13일 (금) 10:32 판
introduction
- cluster algebra defined by a 2x2 matrix
- Laurent phenomenon
- Positivity conjecture
- finite classification
cluster variables and exchange relations
- Fix two positive integers b and c.
- Let \(y_1\) and \(y_2\) be variable in the field \(F=\mathbb{Q}(y_1,y_2)\)
- Define a sequence \(\{y_n\}\) by
\[ y_{m-1}y_{m+1}= \begin{cases} y_m^b+1, & \text{if \]m\( is odd}\\ y_m^c+1, & \text{if \)m\( is even} \\ \end{cases} \)
- We call this 'exchange relation'
- \(y_m\)'s are called 'cluster variable'
- \(\{y_i,y_{i+1}\}\) "cluster"
- \(\{y_m^py_{m+1}^q\}\) "cluster monomials" (supported on a given cluster)
- Note : we can use the exchange relation any \(y_m\) in terms of arbitrary cluster \(\{y_i,y_{i+1}\}\) (rational expression)
matrix formulation
\[B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\] \[\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\] \[\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\]
- \(x_1x_1'=x_2^c+1\) call \(x_1'=x_3\)
- \(x_2x_2'=x_1^b+1\) call \(x_2'=x_4\)
observations
- theorem (FZ)
- For any \(b,c\), \(y_m\) is a Laurent polynomial.
- Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
- In this example, \(bc\leq 3\) iff the recurrence is periodic
cluster algebra associated to Cartan matrices
- Finite type classification \(A(b,c)\) related to root systems of Cartan matrix
\[ \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}\]
- Say \(A(b,c)\) is of finite/affine/indefinite type if \(bc\leq 3\), \(bc=4\), \(bc>4\)
- when \(bc\leq 3\), \(y_m=y_n\) if and only if \(m\equiv n \mod (h+2)\) where h is Coxeter number
- \(bc=1, h=2\)
- \(bc=2, h=4\)
- \(bc=3, h=6\)
- \(bc\geq 4, h=\infty\)
- If \(bc\geq 4\), all \(y_m\) are distinct
algebraic structure
- By "Laurent phenomenon" each element in \(A(b,c)\) can be uniquely expressed as Laurent polynomial in \(y_m\) and \(y_{m+1}\) for any \(m\)
- theorem (Berenstein, Fomin and Zelevinsky)
\[A(b,c)=\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]\]
- standard monomial basis : the following set is a \(\mathbb{Z}\)-basis of \(A(b,c)\)
\[\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}\]
- Here support of any such monomial is
\[\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}\]
- \(A(b,c)\) is finitely generated. In fact,
\[A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle\]
articles
- [SZ2003]Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082.