"Springer correspondence"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* In his paper [Spr76], Springer defined a certain representation of the Weyl group of a reductive group on the cohomology of a set of fixed points in the flag variety by a nilpotent element, which we now call the Springer representation.
 +
* In particular, for various sets of such fixed points, called Springer fibers, the top degree cohomology gives all the irreducible representations of the corresponding Weyl group.
 +
* The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra
 +
* extend this to an equivalence between the triangulated category generated by the Springer perverse sheaves and the derived category of differential graded modules over a dg-ring related to the Weyl group
  
 +
 +
==nilpotent variety==
 +
* Given a semisimple algebraic group $G$ with Lie algebra $\mathfrak{g}$, we call the closure of a $G$-orbit in the nilpotent elements of $\mathfrak{g}$ a nilpotent variety.
 +
 +
==related items==
 +
* {{수학노트|url=콕세터_군의_표현론}}
 +
 +
 +
==expositions==
 +
* Achar, Pramod N., Anthony Henderson, Daniel Juteau, and Simon Riche. “Modular Generalized Springer Correspondence: An Overview.” arXiv:1510.08962 [math], October 29, 2015. http://arxiv.org/abs/1510.08962.
 +
* Clausen, http://www.math.harvard.edu/theses/senior/clausen/clausen.pdf
 +
 +
==encyclopedia==
 +
* http://en.wikipedia.org/wiki/Nilpotent_cone
 +
* http://en.wikipedia.org/wiki/Springer_correspondence
 +
 +
 +
==articles==
 +
* Julianna Tymoczko, The geometry and combinatorics of Springer fibers, arXiv:1606.02760 [math.AG], June 08 2016, http://arxiv.org/abs/1606.02760
 +
* Aubert, Anne-Marie, Ahmed Moussaoui, and Maarten Solleveld. “Generalizations of the Springer Correspondence and Cuspidal Langlands Parameters.” arXiv:1511.05335 [math], November 17, 2015. http://arxiv.org/abs/1511.05335.
 +
* Chen, Tsao-Hsien, Kari Vilonen, and Ting Xue. “Hessenberg Varieties, Intersections of Quadrics, and the Springer Correspondence.” arXiv:1511.00617 [math], November 2, 2015. http://arxiv.org/abs/1511.00617.
 +
* Achar, Pramod N., Anthony Henderson, Daniel Juteau, and Simon Riche. “Modular Generalized Springer Correspondence III: Exceptional Groups.” arXiv:1507.00401 [math], July 1, 2015. http://arxiv.org/abs/1507.00401.
 +
* Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471.
 +
* Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132.
 +
* Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343.
 +
* Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160.
 +
* Springer, T.A.. "Trigonometric Sums, Green Functions on Finite Groups and Representation of Weyl Groups.." Inventiones mathematicae 36 (1976): 173-208
 +
** http://ams.mpim-bonn.mpg.de/mathscinet-getitem?mr=MR0442103
 +
[[분류:duality]]
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:29 판

introduction

  • In his paper [Spr76], Springer defined a certain representation of the Weyl group of a reductive group on the cohomology of a set of fixed points in the flag variety by a nilpotent element, which we now call the Springer representation.
  • In particular, for various sets of such fixed points, called Springer fibers, the top degree cohomology gives all the irreducible representations of the corresponding Weyl group.
  • The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra
  • extend this to an equivalence between the triangulated category generated by the Springer perverse sheaves and the derived category of differential graded modules over a dg-ring related to the Weyl group


nilpotent variety

  • Given a semisimple algebraic group $G$ with Lie algebra $\mathfrak{g}$, we call the closure of a $G$-orbit in the nilpotent elements of $\mathfrak{g}$ a nilpotent variety.

related items


expositions

encyclopedia


articles

  • Julianna Tymoczko, The geometry and combinatorics of Springer fibers, arXiv:1606.02760 [math.AG], June 08 2016, http://arxiv.org/abs/1606.02760
  • Aubert, Anne-Marie, Ahmed Moussaoui, and Maarten Solleveld. “Generalizations of the Springer Correspondence and Cuspidal Langlands Parameters.” arXiv:1511.05335 [math], November 17, 2015. http://arxiv.org/abs/1511.05335.
  • Chen, Tsao-Hsien, Kari Vilonen, and Ting Xue. “Hessenberg Varieties, Intersections of Quadrics, and the Springer Correspondence.” arXiv:1511.00617 [math], November 2, 2015. http://arxiv.org/abs/1511.00617.
  • Achar, Pramod N., Anthony Henderson, Daniel Juteau, and Simon Riche. “Modular Generalized Springer Correspondence III: Exceptional Groups.” arXiv:1507.00401 [math], July 1, 2015. http://arxiv.org/abs/1507.00401.
  • Juteau, Daniel. “Modular Springer Correspondence, Decomposition Matrices and Basic Sets.” arXiv:1410.1471 [math], October 6, 2014. http://arxiv.org/abs/1410.1471.
  • Rider, Laura, and Amber Russell. “Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence.” arXiv:1409.7132 [math], September 24, 2014. http://arxiv.org/abs/1409.7132.
  • Rider, Laura. “Formality for the Nilpotent Cone and a Derived Springer Correspondence.” arXiv:1206.4343 [math], June 19, 2012. http://arxiv.org/abs/1206.4343.
  • Ciubotaru, Dan. “Spin Representations of Weyl Groups and the Springer Correspondence.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2012, no. 671 (2011): 199–222. doi:10.1515/CRELLE.2011.160.
  • Springer, T.A.. "Trigonometric Sums, Green Functions on Finite Groups and Representation of Weyl Groups.." Inventiones mathematicae 36 (1976): 173-208