"데데킨트 합"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | ||
− | * 다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math><br> | + | * 다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math><br> <br> |
2009년 12월 9일 (수) 10:47 판
간단한 소개
- 다음과 같이 sawtooth 함수를 정의하자
\(\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\)
- 서로 소인 두 정수 \(h, k>0\)에 대하여 데데킨트 합 \(s(h,k)\)은 다음과 같이 정의됨
\(s(h,k)=\sum_{n\mod k} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\)
- 서로 소인 두 정수 \(b,c>0\)에 대하여 다음 등식이 성립함
\(s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\)
상호법칙
(정리) 데데킨트
서로 소인 양의 정수 \(d\)와 \(c\)에 대하여 다음이 성립한다.
\(s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}\)
증명
\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz\)
사각형 \(\pm iM, 1+\pm iM\) 을 조금 수정하여 0은 포함하고, 1은 빠지도록 하는 컨투어 \(\Gamma\)에 대한 적분을 사용한다.
\(\lim_{M\to \infty}\cot (x+iM)=-i\)이므로, \(\lim_{M\to \infty}F(x+iM)=-i\) 임을 확인하자.
\(\int_{\Gamma}F(z)dz\) 는 \(M\)에 의존하지 않으므로, \(\int_{\Gamma}F(z)dz = \lim_{M\to\infty}\int_{\Gamma}F(z)dz=-2i\)을 얻는다.
따라서 \(\Gamma\) 내부에 있는 유수의 합 \(S\)는 \(-\frac{1}{\pi}\) 가 된다.
폴은 다음과 같은 점에서 발생한다.
- \(z=0\)
- \(z=\lambda/c\,, \lambda=1,2,\cdots, c-1\)
- \(z=\mu/d\,, \mu=1,2,\cdots, d-1\)
\(z=\lambda/c\) 에서의 유수는 \(\frac{1}{\pi c}\cot \frac{\pi \lambda}{c}\cot\frac{\pi d\lambda}{c}\)
\(z=\mu/c\) 에서의 유수는 \(\frac{1}{\pi d}\cot \frac{\pi \mu}{c}\cot\frac{\pi d\mu}{c}\)
코탄젠트의 급수전개를 사용하여 \(z=0\)에서의 유수를 구하자.
\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz =\frac{1}{\pi^3 cd z^3}(1-\frac{\pi^2z^2}{3}-\cdots)(1-\frac{\pi^2z^2d^2}{3}-\cdots)(1-\frac{\pi^2z^2c^2}{3}-\cdots)\)
따라서 \(z=0\)에서의 유수는 \(-\frac{1}{3\pi}\left(\frac{d}{c}+\frac{1}{cd}+\frac{c}{d}\right)\) 이다.
\(S=\frac{4}{\pi}[-\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)+s(d,c)+s(c,d)]=-\frac{1}{\pi}\) 를 얻는다. (증명끝)
일반화
\(D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right) \left( \left( \frac{bn}{c} \right) \right)\)
상위 주제
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra
- Matthias Beck and Sinai Robins, Springer, 2007
- Matthias Beck and Sinai Robins, Springer, 2007
- Dedekind Sums, The Carus Mathematical Monographs
- H. Rademacher and E. Grosswald
- H. Rademacher and E. Grosswald
- 도서내검색
- 도서검색
수학용어번역
참고할만한 자료
- Dedekind cotangent sums
- Matthias Beck, Acta Arithmetica 109, no.2 (2003), 109-130
- "Dedekind-Rademacher+sums"&list=hide&searchUri=/action/doBasicSearch%3FQuery%3DEmil%2BGrosswald%252C%2B%2522%2BDedekind-Rademacher%2Bsums%2B%2522%252C%26x%3D0%26y%3D0%26wc%3Don&item=1&ttl=3&returnArticleService=showArticle Dedekind-Rademacher Sums
- Emil Grosswald, The American Mathematical Monthly, Vol. 78, No. 6 (Jun. - Jul., 1971), pp. 639-644
- The reciprocity of Dedekind sums and the factor set for the universal covering group of \({\rm SL}(2,\,R)\)
- Tetsuya Asai, Source: Nagoya Math. J. Volume 37 (1970), 67-80.
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dedekind_sum
- http://www.wolframalpha.com/input/?i=sawtooth+function
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=