Teichmuller theory

수학노트
imported>Pythagoras0님의 2012년 10월 28일 (일) 15:05 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

==introduction

 

 

==review of hyperbolic geometry

 

 

==Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic  (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary

 

 

 

==history

 

 

 

 

 

 

==related items

 

 

 

 

 

encyclopedia

 

 

 

 

 

 

==books

 

 

 

 

 

 

 

 

==expositions

 

 

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

 

 

 

 

 

==blogs

 

 

 

 

 

 

==experts on the field

 

 

 

 

 

 

==links