Rank 2 cluster algebra

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 1월 19일 (수) 12:46 판 (피타고라스님이 이 페이지의 이름을 rank 2 cluster algebra로 바꾸었습니다.)
둘러보기로 가기 검색하러 가기
introduction
  • cluster algebra defined by a 2x2 matrix

 

 

 

cluster variables and exchange relations

Fix two positive integers b and c.

Let y_1 and y_2 be variable. Define a sequence {y_n}.

\(y_{m-1}y_{m+1}=y_m^b+1\) if m odd

\(y_{m-1}y_{m+1}=y_m^c+1\) if m even

We call this 'exchange relation'

y_m's are called 'cluster variable'

\(\{y_i,y_{i+1}\}\) "cluster"

Note : we can use the exchange relation any y_m in terms of arbitrary cluster {y_i,y_{i+1}} (rational expression)

 

 

example 1

Put b=c=1

y_1,y_2

\(y_3y_1=y_2+1\). so \(y_3=\frac{y_2+1}{y_1}\)

\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}\)

\(y_3y_5=y_4+1\) implies \(y_5=\frac{y_4+1}{y_3}= \frac{y_1+1}{y_2}\) we are getting Laurent polynomials

\(y_4y_6=y_5\) implies \(y_6=y_1\)

 

 

example 2

Put b=1, c=3

y_1,y_2

\(y_3y_1=y_2^3+1\). so \(y_3=\frac{y_2^3+1}{y_1}\)

\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}\)

\(y_3y_5=y_4^3+1\) implies \(y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}\)[1]http://www.wolframalpha.com/input/?i=((x%2By^3%2B1)^3%2B(xy)^3)/(x^2y^3(y^3%2B1)) 

Note that we are getting Laurent polynomials.

\(y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2}\)

\(y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3}\)

\(y_8=\frac{y_1+1}{y_2}\)

\(y_9=y_1\)

\(y_{10}=y_2\)

 

 

matrix formulation

\(B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\)

\(\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

\(\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

For \(k\in \{1,2,\cdots, n\}\),  \(x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}\)

x_1x_1'=x_2^c+1 call x_1'=x_3

x_2x_2'=x_1^b+1 call x_2'=x_4

 

 

 

 

observations

(FZ) For any b,c, y_m is a Laurent polynomial.

Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )

In this example, 

\(bc\leq 3\) iff the recurrence is periodic

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links