Zeta integral

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 16일 (월) 10:54 판
둘러보기로 가기 검색하러 가기

introduction

  • many zeta integrals in the theory of automorphic forms can be produced or explained by appropriate choices of a Schwartz space of test functions on a spherical homogeneous space, which are in turn dictated by the geometry of affine spherical embeddings


local zeta integral

  • quasicharacter on $F_v^{\times}$ are of the form $\omega_s(x)=\omega(x)|x|^s$ where $\omega$ is unitary
  • $\omega$ : unitary, $s\in \mathbb{C}$
  • the following converges for $\Re(s)>0$

$$ \zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x $$

  • analytic continuation of $Z(f,\omega,s)$
  • functional equation

global zeta integral

Riemann zeta function

  • $f\in \mathcal{S}(\mathbb{A})$
  • define

$$ \zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x $$

thm

The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$. This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation One has $$ \zeta(f,s)=\zeta(\widehat{f},1-s) $$


Dirichlet L-functions

  • $f\in \mathcal{S}(\mathbb{A})$
  • $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
  • define

$$ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x $$

thm

Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has $$ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) $$

articles