대칭군의 지표(character)에 대한 프로베니우스 공식

수학노트
Pythagoras0 (토론 | 기여)님의 2016년 6월 1일 (수) 20:02 판 (section '관련논문' updated)
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 슈르 다항식(Schur polynomial)을 이용하여, 대칭군 (symmetric group)의 지표를 계산하는 방법
  • 대칭군 $S_m$의 기약표현은 크기가 m인 영 다이어그램(또는 m의 분할)과 일대일대응된다
  • m의 분할 $\lambda$에 대응되는 $S_m$의 기약표현의 지표를 \(\chi_{\lambda}\) 로 나타내자
  • \(C_{\mathbf{i}}=(1^{i_1},2^{i_2},\cdots,m^{i_m})\)를 \(i_1+2i_2+\cdots mi_m=m\)를 만족시키는 대칭군 $S_m$의 공액류라 하면, $\chi_{\lambda}(C_{\mathbf{i}})$의 값은 다음 프로베니우스 공식으로 주어진다

\[\left(\sum_{l=1}^{m} x_l\right)^{i_1}\left(\sum_{l=1}^{m} x_l^2\right)^{i_2}\cdots \left(\sum_{l=1}^{m} x_l^m\right)^{i_m}=\sum_{\lambda}\chi_{\lambda}(C_{\mathbf{i}})S_{\lambda}(x_1,\cdots, x_m)\] 여기서 \(S_{\lambda}\) 는 슈르 다항식(Schur polynomial)

  • 다음과 같이 표현하기도 한다

\[\prod_{j=1}^{m}P_{j}(x)^{i_j}=\sum_{\lambda}\chi_{\lambda}(C_{\mathbf{i}})S_{\lambda}(x_1,\cdots, x_m)\]

$S_3$

  • 대칭군 \(S_3\) 의 지표 테이블

\begin{array}{c|ccc} & \{1^3\} & \{1^1,2^1\} & \{3^1\} \\ \hline \{3\} & 1 & 1 & 1 \\ \{2,1\} & 2 & 0 & -1 \\ \{1,1,1\} & 1 & -1 & 1 \end{array}

  • 슈르 다항식

\[ \begin{align} S_{(3)} & = &x_1 x_2 x_3+\left(x_1+x_2+x_3\right){}^3-2 \left(x_1+x_2+x_3\right) \left(x_1 x_2+x_1 x_3+x_2 x_3\right) \\ S_{(2,1)} & =&\left(x_1+x_2\right) \left(x_1+x_3\right) \left(x_2+x_3\right) \\ S_{(1,1,1)} &= &x_1 x_2 x_3 \end{align} \]

  • 슈르 다항식과 거듭제곱의 합 (power sum) 대칭다항식

\[ \begin{align}  \left(x_1+x_2+x_3\right){}^3&=S_{(3)}+2\cdot S_{(2,1)}+S_{(1,1,1)}\\ \left(x_1+x_2+x_3\right) \left(x_1^2+x_2^2+x_3^2\right)& = S_{(3)}+0\cdot S_{(2,1)}-S_{(1,1,1)}\\ x_1^3+x_2^3+x_3^3&=S_{(3)}-1\cdot S_{(2,1)}+S_{(1,1,1)} \end{align} \]


$S_4$

  • 지표 테이블

\begin{array}{c|ccccc} & \{1^4\} & \{1^2,2^1\} & \{1^1,3^1\} & \{2^2\} & \{4^1\} \\ \hline \{4\} & 1 & 1 & 1 & 1 & 1 \\ \{3,1\} & 3 & 1 & 0 & -1 & -1 \\ \{2,2\} & 2 & 0 & -1 & 2 & 0 \\ \{2,1,1\} & 3 & -1 & 0 & -1 & 1 \\ \{1,1,1,1\} & 1 & -1 & 1 & 1 & -1 \end{array}


$S_5$

  • 지표 테이블

\begin{array}{c|ccccccc} & \{1^5\} & \{1^3,2^1\} & \{1^2,3^1\} & \{1^1,2^2\} & \{1^1,4^1\} & \{2^1,3^1\} & \{5^1\} \\ \hline \{5\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{4,1\} & 4 & 2 & 1 & 0 & 0 & -1 & -1 \\ \{3,2\} & 5 & 1 & -1 & 1 & -1 & 1 & 0 \\ \{3,1,1\} & 6 & 0 & 0 & -2 & 0 & 0 & 1 \\ \{2,2,1\} & 5 & -1 & -1 & 1 & 1 & -1 & 0 \\ \{2,1,1,1\} & 4 & -2 & 1 & 0 & 0 & 1 & -1 \\ \{1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 \end{array}

$S_6$

  • 지표 테이블

\begin{array}{c|ccccccccccc} & \{1^6\} & \{1^4,2^1\} & \{1^3,3^1\} & \{1^2,2^2\} & \{1^2,4^1\} & \{1^1,2^1,3^1\} & \{1^1,5^1\} & \{2^3\} & \{2^1,4^1\} & \{3^2\} & \{6^1\} \\ \hline \{6\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{5,1\} & 5 & 3 & 2 & 1 & 1 & 0 & 0 & -1 & -1 & -1 & -1 \\ \{4,2\} & 9 & 3 & 0 & 1 & -1 & 0 & -1 & 3 & 1 & 0 & 0 \\ \{4,1,1\} & 10 & 2 & 1 & -2 & 0 & -1 & 0 & -2 & 0 & 1 & 1 \\ \{3,3\} & 5 & 1 & -1 & 1 & -1 & 1 & 0 & -3 & -1 & 2 & 0 \\ \{3,2,1\} & 16 & 0 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 \\ \{3,1,1,1\} & 10 & -2 & 1 & -2 & 0 & 1 & 0 & 2 & 0 & 1 & -1 \\ \{2,2,2\} & 5 & -1 & -1 & 1 & 1 & -1 & 0 & 3 & -1 & 2 & 0 \\ \{2,2,1,1\} & 9 & -3 & 0 & 1 & 1 & 0 & -1 & -3 & 1 & 0 & 0 \\ \{2,1,1,1,1\} & 5 & -3 & 2 & 1 & -1 & 0 & 0 & 1 & -1 & -1 & 1 \\ \{1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \end{array}

$S_7$

  • 지표 테이블

\begin{array}{c|ccccccccccccccc} & \{1^7\} & \{1^52^1\} & \{1^43^1\} & \{1^32^2\} & \{1^34^1\} & \{1^22^13^1\} & \{1^25^1\} & \{1^12^3\} & \{1^12^14^1\} & \{1^13^2\} & \{1^16^1\} & \{2^23^1\} & \{2^15^1\} & \{3^14^1\} & \{7^1\} \\ \hline \{7\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{6,1\} & 6 & 4 & 3 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\ \{5,2\} & 14 & 6 & 2 & 2 & 0 & 0 & -1 & 2 & 0 & -1 & -1 & 2 & 1 & 0 & 0 \\ \{5,1,1\} & 15 & 5 & 3 & -1 & 1 & -1 & 0 & -3 & -1 & 0 & 0 & -1 & 0 & 1 & 1 \\ \{4,3\} & 14 & 4 & -1 & 2 & -2 & 1 & -1 & 0 & 0 & 2 & 0 & -1 & -1 & 1 & 0 \\ \{4,2,1\} & 35 & 5 & -1 & -1 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & -1 & 0 & -1 & 0 \\ \{4,1,1,1\} & 20 & 0 & 2 & -4 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & -1 \\ \{3,3,1\} & 21 & 1 & -3 & 1 & -1 & 1 & 1 & -3 & -1 & 0 & 0 & 1 & 1 & -1 & 0 \\ \{3,2,2\} & 21 & -1 & -3 & 1 & 1 & -1 & 1 & 3 & -1 & 0 & 0 & 1 & -1 & 1 & 0 \\ \{3,2,1,1\} & 35 & -5 & -1 & -1 & 1 & 1 & 0 & -1 & 1 & -1 & -1 & -1 & 0 & 1 & 0 \\ \{3,1,1,1,1\} & 15 & -5 & 3 & -1 & -1 & 1 & 0 & 3 & -1 & 0 & 0 & -1 & 0 & -1 & 1 \\ \{2,2,2,1\} & 14 & -4 & -1 & 2 & 2 & -1 & -1 & 0 & 0 & 2 & 0 & -1 & 1 & -1 & 0 \\ \{2,2,1,1,1\} & 14 & -6 & 2 & 2 & 0 & 0 & -1 & -2 & 0 & -1 & 1 & 2 & -1 & 0 & 0 \\ \{2,1,1,1,1,1\} & 6 & -4 & 3 & 2 & -2 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ \{1,1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \end{array}

역사

 

 

 

메모



 

 

관련된 항목들


 


 

수학용어번역

  • 공액류, conjugacy class
  • 지표, character - 대한수학회 수학용어집
  • 켤레변형, 공액연산자, conjugacy - 대한수학회 수학용어집
  • 류, class - 대한수학회 수학용어집


 

 

매스매티카 파일 및 계산 리소스


리뷰논문, 에세이, 강의노트

 

관련논문

  • Rosa Orellana, Mike Zabrocki, Symmetric group characters as symmetric functions, arXiv:1605.06672 [math.CO], May 21 2016, http://arxiv.org/abs/1605.06672
  • Orellana, Rosa, and Mike Zabrocki. “Symmetric Group Characters as Symmetric Functions.” arXiv:1510.00438 [math], October 1, 2015. http://arxiv.org/abs/1510.00438.
  • Regev, Alon, Amitai Regev, and Doron Zeilberger. “Identities in Character Tables of $S_n$.” arXiv:1507.03499 [math], July 13, 2015. http://arxiv.org/abs/1507.03499.