산술 기하 평균을 이용한 원주율의 계산

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 24일 (금) 02:45 판 (Pythagoras0 사용자가 산술기하평균함수(AGM)와 파이값의 계산 문서를 산술 기하 평균을 이용한 원주율의 계산 문서로 옮겼습니다.)
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요


타원적분과 산술 기하 평균

타원적분

  • 타원적분 항목 참조
  • \(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)
  • \(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}d\theta\)
  • \(k'=\sqrt{1-k^2}\)
  • \(K'(k) : = K(k')\)
  • \(E'(k) : = E(k')\)

타원적분에 대한 르장드르 항등식

  • 르장드르 항등식

\[E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\]

  • 특별히 다음과 같은 관계가 성립함

\[2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2} \label{leg}\]

타원적분과 산술 기하 평균의 관계

\[K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\]

  • 특별히 다음이 성립

\[K(\frac{1}{\sqrt2})=\frac{\pi}{2M(1,\frac{1}{\sqrt2})} \label{mk}\]


가우스-살라민 알고리즘

보조정리

주어진 양수 $0<k<1$에 대하여 다음과 같이 수열 \(a_n,b_n,c_n\)을 정의하자. \[ a_0=1,b_0=\sqrt{1-k^2} \\ a_{n+1}={a_n+b_n \over 2},b_{n+1}=\sqrt{a_n b_n}\\ c_n=\sqrt{a_n^2-b_n^2} \] 다음이 성립한다 \[\sum_{i=0}^{\infty} 2^{i-1} c_i^2 = 1 - \frac{E(k)}{K(k)} \label{lem}\]


정리

다음과 같이 수열 \(a_n,b_n,c_n,\pi_n\)을 정의하자. $$ a_0=1,b_0=\frac{1}{\sqrt{2}}\\ a_{n+1}={a_n+b_n \over 2},b_{n+1}=\sqrt{a_n b_n}\\ c_n=\sqrt{a_n^2-b_n^2}=\frac{c_{n-1}^2}{4a_n} \\ \pi_n=\frac{2a_{n+1}^2}{1-\sum_{k=0}^{n} 2^kc_k^2} $$ 이 때, 수열 $\pi_n$은 \(\pi\)로 수렴한다.

증명

\(M=M(1,1/\sqrt{2})\), \(K=K(1/\sqrt{2})\), \(E=E(1/\sqrt{2})\)로 두자

\ref{leg}로부터 다음을 얻는다 \[2KE-K^2=\frac{\pi}{2}\] 즉, \[\frac{2E}{K}-1=\frac{\pi}{2K^2}\] \ref{mk}로부터 \(2MK=\pi\)를 얻는다

\ref{lem}로부터 \[ \begin{aligned} \lim_{n\to \infty}\pi_n&=\lim_{n\to \infty} \frac{2a_{n+1}^2}{1-\sum_{k=0}^{n} 2^kc_k^2}\\ &=\frac{2M^2}{1-2(1-E/K)}=\frac{2M^2}{{\pi}/{2K^2}}=\frac{\pi^2/2K^2}{{\pi}/{2K^2}}\\ &=\pi \end{aligned} \]■

수치 계산

  • 수열 \(\pi_n\)의 처음 여섯항을 계산한 결과

$$ 3.1405792505221682483113312689758233117734402375129\\ 3.1415926462135422821493444319826957743144372233456\\ 3.1415926535897932382795127748018639743812255048354\\ 3.1415926535897932384626433832795028841971146782836\\ 3.1415926535897932384626433832795028841971693993751\\ 3.1415926535897932384626433832795028841971693993751 $$  


또다른 알고리즘

  • 수열 $x_n, y_n, \pi_n$을 다음과 같이 정의하자

$$ x_0=\sqrt{2},\pi_0=2+\sqrt{2},y_1=\sqrt[4]{2} \\ x_{n+1}=\frac{1}{2}(\sqrt{x_{n}}+\frac{1}{\sqrt{x_{n}}}),\quad n\geq0 \\ y_{n+1}=\frac{y_{n}\sqrt{x_n}+\frac{1}{\sqrt{x_{n}}}}{y_n+1}, \quad n\geq1 \\ \pi_n=\pi_{n-1}\frac{x_n+1}{y_n+1}, \quad n\geq1 $$

  • 수열 \(\pi_n\)은 원주율로 수렴한다
  • 다음은 처음 여섯개의 항을 계산한 결과.

$$ 3.1426067539416226007907198236183018919713562462772\\3.1415926609660442304977522351203396906792842568645\\3.1415926535897932386457739917571417940347896238675\\3.1415926535897932384626433832795028841972241204666\\ 3.1415926535897932384626433832795028841971693993751\\ 3.1415926535897932384626433832795028841971693993751 $$

  • 한번씩 계산할 때마다, 대략 두 배 정도 정확한 자리수
  • 9번째까지 계산한다면, 1000자리 이상의 파이값을 계산

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

사전형태의 자료


관련도서


 

관련논문