"Ζ(4)와 중심이항계수"의 두 판 사이의 차이

수학노트
이동: 둘러보기, 검색
(Comtet의 공식)
16번째 줄: 16번째 줄:
 
:<math>2(\sin^{-1} x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}</math>
 
:<math>2(\sin^{-1} x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}</math>
 
이를 이용하여, 다음을 증명할 수 있다
 
이를 이용하여, 다음을 증명할 수 있다
:<math>I=\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\int_{0}^{1/2}\int_{0}^{u}(\sin^{-1} x)^2\frac{dx}{x}\frac{du}{u}</math>
+
:<math>I=\frac{1}{8}\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\int_{0}^{1/2}\int_{0}^{u}(\sin^{-1} x)^2\frac{dx}{x}\frac{du}{u}\label{cen}
 +
</math>
  
한편
+
\ref{cen}의 우변은
:<math>I=\int_{0}^{1/2}\int_{0}^{u}(\sin^{-1} x)^2\frac{dx}{x}\frac{du}{u}=2\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{3240}</math>
+
:<math>I=\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx</math> 이므로,
 
+
+
 
+
한편,
+
:<math>\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx</math> 이므로,
+
  
 
<math>x=\sin\frac{t}{2}</math>로 치환하면,
 
<math>x=\sin\frac{t}{2}</math>로 치환하면,
  
:<math>\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx</math>를 얻는다.
+
:<math>I=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx</math>를 얻는다.
 
+
따라서,
+
:<math>\frac{1}{8}\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx.</math>
+
  
 
이제 [[로그 사인 적분 (log sine integrals)]] 에서 얻은 다음 결과를 사용하자.
 
이제 [[로그 사인 적분 (log sine integrals)]] 에서 얻은 다음 결과를 사용하자.
 
:<math>\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}</math>
 
:<math>\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}</math>
다음을 얻는다
+
따라서,
:<math>\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}</math>
+
:<math>8I=\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=2\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{3240}</math>
 
+
  
 
==메모==
 
==메모==

2015년 3월 21일 (토) 00:46 판

개요

\[\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}\]


Comtet의 공식

정리(Comtet의 공식)

\[\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\]


증명

아크사인함수의 멱급수로부터 다음을 얻는다. \[2(\sin^{-1} x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\] 이를 이용하여, 다음을 증명할 수 있다 \[I=\frac{1}{8}\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\int_{0}^{1/2}\int_{0}^{u}(\sin^{-1} x)^2\frac{dx}{x}\frac{du}{u}\tag{1} \]

(1)의 우변은 \[I=\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx\] 이므로,

\(x=\sin\frac{t}{2}\)로 치환하면,

\[I=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\]를 얻는다.

이제 로그 사인 적분 (log sine integrals) 에서 얻은 다음 결과를 사용하자. \[\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\] 따라서, \[8I=\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=2\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{3240}\] ■

메모

증명

\[2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\] 의 양변을 \(2x\)로 나눈뒤, 다음과 같은 적분을 구하자.

\[\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(2x)^{2n-1}}{n^2\binom{2n}{n}}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\frac{(2u)^{2n}}{4n^3\binom{2n}{n}}\,\frac{du}{u}\]

우변으로부터 다음을 얻는다. \[\sum_{n=1}^{\infty}\frac{1}{8n^4\binom{2n}{n}}\]


관련논문