Ζ(4)와 중심이항계수

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

\[\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}\]


Comtet의 공식

정리(Comtet의 공식)

\[\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\]


증명

아크사인함수의 멱급수로부터 다음을 얻는다. \[2(\sin^{-1} x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\] 이를 이용하여, 다음을 증명할 수 있다 \[I=\frac{1}{8}\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\int_{0}^{1/2}\int_{0}^{u}(\sin^{-1} x)^2\frac{dx}{x}\frac{du}{u}\label{cen} \]

\ref{cen}의 우변은 \[I=\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx\] 이므로,

\(x=\sin\frac{t}{2}\)로 치환하면,

\[I=-\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\]를 얻는다.

이제 로그 사인 적분 (log sine integrals) 에서 얻은 다음 결과를 사용하자. \[\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\] 따라서, \[8I=\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=2\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{3240}\] ■

메모

증명

\[2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\] 의 양변을 \(2x\)로 나눈뒤, 다음과 같은 적분을 구하자.

\[\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(2x)^{2n-1}}{n^2\binom{2n}{n}}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\frac{(2u)^{2n}}{4n^3\binom{2n}{n}}\,\frac{du}{u}\]

우변으로부터 다음을 얻는다. \[\sum_{n=1}^{\infty}\frac{1}{8n^4\binom{2n}{n}}\]


매스매티카 파일 및 계산 리소스

관련논문

  • Borwein, J. M., D. J. Broadhurst, and J. Kamnitzer. “Central Binomial Sums, Multiple Clausen Values and Zeta Values.” arXiv:hep-th/0004153, April 22, 2000. http://arxiv.org/abs/hep-th/0004153.
  • Borwein, David, and Jonathan M. Borwein. “On an Intriguing Integral and Some Series Related to ζ(4).” Proceedings of the American Mathematical Society 123, no. 4 (April 1, 1995): 1191–98. doi:10.2307/2160718. http://www.jstor.org/stable/2160718