"가우스의 렘니스케이트 상수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(새 문서: ==개요== * 렘니스케이트 상수 $\omega$를 다음과 같이 정의 :<math>\omega:=2\int_0^1\frac{dx}{\sqrt{1-x^4}}=2.62\cdots</math> * 타원곡선 y²=x³-x의 주기([[p...)
 
2번째 줄: 2번째 줄:
 
* 렘니스케이트 상수 $\omega$를 다음과 같이 정의
 
* 렘니스케이트 상수 $\omega$를 다음과 같이 정의
 
:<math>\omega:=2\int_0^1\frac{dx}{\sqrt{1-x^4}}=2.62\cdots</math>
 
:<math>\omega:=2\int_0^1\frac{dx}{\sqrt{1-x^4}}=2.62\cdots</math>
 +
* [[렘니스케이트 곡선의 둘레의 길이]]의 절반에 해당
 
* [[타원곡선 y²=x³-x]]의 주기([[periods]])이며 [[무리수와 초월수|초월수]]임.
 
* [[타원곡선 y²=x³-x]]의 주기([[periods]])이며 [[무리수와 초월수|초월수]]임.
  
  
===원주율과의 비교===
+
==원주율과의 비교==
 
* 가우스는 단위원의 둘레의 길이와 렘니스케이트의 둘레의 길이의 비율을 계산하였다
 
* 가우스는 단위원의 둘레의 길이와 렘니스케이트의 둘레의 길이의 비율을 계산하였다
 
:<math>\frac{\pi}{2}=\int_0^1\frac{dx}{\sqrt{1-x^2}}=1.57\cdots</math>
 
:<math>\frac{\pi}{2}=\int_0^1\frac{dx}{\sqrt{1-x^2}}=1.57\cdots</math>
45번째 줄: 46번째 줄:
 
\end{array}
 
\end{array}
 
$$
 
$$
 +
 +
 +
==역사==
 +
* 1798~1799년의 시기에 가우스는 이 곡선의 길이와 관련하여 다음과 같은 기록을 일기에 남김. ([http://books.google.com/books?id=QwwcmweJCDQC&pg=PA99&lpg=PA99&dq=gauss+new+analysis+lemniscate&source=web&ots=zguJpj77J9&sig=fnWL0QJ09eHIqPElVjrSoXaQW5M#PPA99,M1 Pi-unleashed, 99p])
 +
<blockquote style="margin: 0px; padding: 0px 0px 0px 38px; line-height: 2em; background-color: rgb(239, 239, 239); background-position: 14px 4px;">
 +
We have gained some very elegant details about the lemniscate, which have exceeded all expectations, and indeed using methods which open up an entirely new field. That the AGM is equal to <math>\frac{\pi }{\omega}</math> between 1 and <math>\sqrt{2}</math> we have confirmed up to the 11th decimal digit; if this is proven, then a truly new field of analysis stands before us.
 +
</blockquote>
 +
 +
 +
==관련된 항목들==
 +
* [[산술 기하 평균을 이용한 원주율의 계산]]
 +
* [[타원곡선의 주기]]
 +
* [[Chowla-셀베르그 공식]]
 +
* [[무리수와 초월수]]
 +
* [[아이젠슈타인 기약다항식 판정법]]
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjRmZjkwMjgtNGY0Mi00MzllLWExMGQtZjExZjIzZWMyNDRk&sort=name&layout=list&num=50
 +
* http://mathworld.wolfram.com/LemniscateConstant.html
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
** http://oeis.org/A064853
 +
 +
 +
==사전 형태의 자료==
 +
* http://en.wikipedia.org/wiki/Gauss's_constant
 +
 +
 +
 +
[[분류:원주율]]
 +
[[분류:상수]]

2015년 4월 5일 (일) 03:40 판

개요

  • 렘니스케이트 상수 $\omega$를 다음과 같이 정의

\[\omega:=2\int_0^1\frac{dx}{\sqrt{1-x^4}}=2.62\cdots\]


원주율과의 비교

  • 가우스는 단위원의 둘레의 길이와 렘니스케이트의 둘레의 길이의 비율을 계산하였다

\[\frac{\pi}{2}=\int_0^1\frac{dx}{\sqrt{1-x^2}}=1.57\cdots\] \[\frac{\omega}{2}=\int_0^1\frac{dx}{\sqrt{1-x^4}}=1.31\cdots\] \[\frac{\pi }{\omega}=1.1981402347\cdots\] 렘니스케이트(lemniscate) 곡선의 길이와 타원적분2.png


정리

다음이 성립한다 \[\frac{\pi }{\omega}=M(1,\sqrt2)\] 여기서 \(M(a,b)\) 은 두 수 $a, b$의 산술 기하 평균 (arithmetic-geometric mean)

증명

렘니스케이트 상수의 타원적분 표현 $$\frac{\omega}{2}=\frac{1}{\sqrt{2}}K(\frac{1}{\sqrt2})\label{ome}$$ 한편 란덴변환(Landen's transformation) 에서 다음을 얻었다 $$K(\frac{1}{\sqrt2})=\frac{\pi}{2M(1,\frac{1}{\sqrt2})}\label{landen}$$ \ref{ome}와 \ref{landen}를 이용하여 다음을 얻는다: $$\frac{\pi}{\omega}=\frac{2K(\frac{1}{\sqrt2}){M(1,\frac{1}{\sqrt2})}}{\sqrt{2}K(\frac{1}{\sqrt2})} = \sqrt{2}M(1,\frac{1}{\sqrt2})=M(1,\sqrt2)$$ ■

테이블

$$ \begin{array}{ccc} {n} & a_n & b_n \\ \hline 0 & 1.4142135623730950488 & 1.0000000000000000000 \\ 1 & 1.2071067811865475244 & 1.1892071150027210667 \\ 2 & 1.1981569480946342956 & 1.1981235214931201226 \\ 3 & 1.1981402347938772091 & 1.1981402346773072058 \\ 4 & 1.1981402347355922074 & 1.1981402347355922074 \\ 5 & 1.1981402347355922074 & 1.1981402347355922074 \\ 6 & 1.1981402347355922074 & 1.1981402347355922074 \\ 7 & 1.1981402347355922074 & 1.1981402347355922074 \\ 8 & 1.1981402347355922074 & 1.1981402347355922074 \\ 9 & 1.1981402347355922074 & 1.1981402347355922074 \\ \end{array} $$


역사

  • 1798~1799년의 시기에 가우스는 이 곡선의 길이와 관련하여 다음과 같은 기록을 일기에 남김. (Pi-unleashed, 99p)

We have gained some very elegant details about the lemniscate, which have exceeded all expectations, and indeed using methods which open up an entirely new field. That the AGM is equal to \(\frac{\pi }{\omega}\) between 1 and \(\sqrt{2}\) we have confirmed up to the 11th decimal digit; if this is proven, then a truly new field of analysis stands before us.


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료