감마함수

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 팩토리얼 함수의 정의역을 복소수로 확장하는 함수이다.
  • 자연수에 대해 팩토리얼과 같은 값을 가지면서 \(s > 0\) 일 때 \(\log \Gamma(s)\) 가 볼록성을 갖는 유일한 함수이다.
  • 다음과 같은 중요한 성질을 갖는다\[\Gamma(s+1) =s\Gamma(s)\]\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]
  • 대수다양체의 periods 를 표현하는데 등장하며, \(s\)가 유리수일때의 감마함수의 값이 초월수인지, 그리고 그 값들 사이의 대수적 관계에 대한 문제는 중요 미해결 문제


정의

  • 실수부가 \(\Re s>0\)인 복소수 \(s>0\)에 대하여 다음과 같이 정의\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\]
  • \(\Gamma(s+1) =s\Gamma(s)\)
  • 자연수 \(n\)에 대하여 \(\Gamma(n)=(n-1)!\)
  • 가우스의 정의\[\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \]


해석적확장

  • 해석적확장(analytic continuation)
  • \(\Gamma(s+1) =s\Gamma(s)\)를 이용하여, 복소평면전체에서 정의된 meromorphic 함수로 이해가능
  • \(s=0,-1,-2\cdots\)에서 폴(pole)을 가진다


함수의 그래프

  • \(-4<s<4\)의 범위에서 다음과 같은 그래프를 가짐

3197800-gamma.jpg

  • \(s>0\)일 때, \(\ln \Gamma(s)\)의 그래프

3197800-logofgamma.jpg


무한곱표현

  • 바이어슈트라스 무한곱

\[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\]


반사공식

  • \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)

(증명)

삼각함수의 무한곱 표현 \[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\] 과 \[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\] 를 써서 증명된다. ■

  • 다음 계산을 얻는다

\[\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\]

  • 일반적으로 \[\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}\]

(증명) \[\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}\]■



곱셈공식

  • 이항

\[\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!\]\[2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\]

  • 일반화\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]



적분표현

  • Binet's second expression
  • \(\operatorname{Re} z > 0 \) 일 때,

\[\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt\]



Hurwitz 제타함수와의 관계



쿰머의 푸리에 급수

\[\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \end{eqnarray} \]



테일러 급수

  • 로그감마 함수의 테일러 급수\[\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k\]



다이감마 함수

  • 감마함수의 로그미분으로 정의

\[\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\]


오일러 베타적분

\[B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\]


감마함수와 초월수

  • 감마함수의 유리수에서의 값이 초월수인지의 문제.
  • 다음 경우가 초월수 임이 알려져 있다

\[\Gamma(\frac{1}{3}),\Gamma(\frac{2}{3}),\Gamma(\frac{1}{4}),\Gamma(\frac{3}{4}),\Gamma(\frac{1}{6}),\Gamma(\frac{5}{6})\]

  • 미해결 문제. 다음은 초월수인가?

\[\Gamma(\frac{1}{5})\]


메모


역사



관련된 항목들


하위페이지


매스매티카 파일 및 계산 리소스


사전형태의 자료



관련도서

  • Emil Artin, The Gamma Function


리뷰, 에세이, 강의노트

  • Dutka, Jacques. 1991. “The early history of the factorial function.” Archive for History of Exact Sciences 43 (3): 225-249. doi:10.1007/BF00389433.


관련논문

  • Fekih-Ahmed, Lazhar. “On the Power Series Expansion of the Reciprocal Gamma Function.” arXiv:1407.5983 [math], July 22, 2014. http://arxiv.org/abs/1407.5983.
  • Paris, R. B. “On the Asymptotic Expansion of \(\Gamma(x)\), Lagrange’s Inversion Theorem and the Stirling Coefficients.” arXiv:1405.3423 [math], May 14, 2014. http://arxiv.org/abs/1405.3423.
  • Chudnovsky, G. “Algebraic Independence of the Values of Elliptic Function at Algebraic Points.” Inventiones Mathematicae 61, no. 3 (October 1, 1980): 267–90. doi:10.1007/BF01390068.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gamma'}, {'LEMMA': 'function'}]