게이지 이론

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 입자물리의 언어
  • 국소적인(local) 게이지 불변성으로부터 게이지 보존(힘을 매개하는 입자)의 등장과 입자 사이의 상호작용을 설명
  • 미분기하의 principal bundle과 접속(connection)의 언어를 사용하여 기술할 수 있음



국소 게이지 불변성과 양자전기역학

맥스웰 방정식의 게이지 불변성

  • 상호작용이 없는 전자기장의 라그랑지안은 다음과 같다

\[\mathcal{L}_{\text{EM}}= - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\] 이 때 \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)는 전자기텐서, \(A=(A_{\mu})\)는 전자기 포텐셜

  • 라그랑지안은 전자기 포텐셜의 다음과 같은 변환에 대하여 불변이다

\[A_{\mu}(x) \to A_{\mu}(x)-\partial_{\mu}\alpha(x)\] 여기서 \(\alpha(x)\)는 임의의 스칼라장


QED 라그랑지안과 국소 게이지 불변성

  • \(\psi\) 는 디랙 field (전자를 나타내는 장)
  • 디랙 방정식\((-i\gamma^\mu\partial_\mu + m) \psi = 0\)
  • 상호작용이 없는 라그랑지안

\[\mathcal{L}_{\text{free}} = i \bar{\psi} \gamma^\mu \partial_\mu \psi -m \bar{\psi} \psi+\mathcal{L}_{\text{EM}}\] 로 시작하자. 여기서 \(\bar{\psi}= \psi^{\dagger} \gamma^0 \) Dirac adjoint, \(\gamma^{\mu}\)는 디랙 행렬

  • 라그랑지안이 \(U(1)\) - 국소 게이지 불변, 즉

\[\psi(x) \to e^{i\alpha(x)}\psi(x)\] 에 의해 불변이 되도록 하려한다

  • 라그랑지안에 적당한 항을 더하면, 게이지 불변성을 얻게 된다

\[\mathcal{L}_{\text{int}}=\mathcal{L}_{\text{free}}+q \bar{\psi}\gamma^{\mu} A_{\mu} \psi =i \bar{\psi} \gamma^\mu \partial_\mu \psi - q \bar{\psi}\gamma^{\mu} A_{\mu} \psi -m \bar{\psi} \psi+\mathcal{L}_{\text{EM}}\]

  • 이를 다음과 같이 쓰기도 한다

\[\mathcal{L}_{\text{int}}=i \bar{\psi} \gamma^\mu D_\mu \psi -m \bar{\psi} \psi+\mathcal{L}_{\text{EM}}\] 여기서 \(D_\mu=\partial_\mu + i q A_{\mu}\). 이는 공변미분(covariant derivative)에 해당하며, 게이지장이 접속 (connection) 형식에 해당함을 보여준다

  • 이 때 게이지장(전자기장)의 게이지 변환은 다음과 같이 주어진다

\[A_{\mu}(x) \to A_{\mu}(x)-\frac{1}{q}\partial_{\mu}\alpha(x)\]


양-밀스 이론

  • 리대수 \(\mathfrak{g}\)의 생성원과 구조상수

\[ \ [T_a,T_b]=f_{ab}^{c}T_c \]

  • 게이지 포텐셜 \(\mathfrak{g}\)-valued 1-form

\[ A=A_{\mu}^{a}dx^{\mu}T_{a} \]

  • field strength 텐서 \(\mathfrak{g}\)-valued 2-form

\[ F=\frac{1}{2}F^{a}_{\mu \nu}dx^{\mu}\wedge dx^{\nu} T_a \] \[ F_{\mu \nu}^a = \partial_\mu A_\nu^a-\partial_\nu A_\mu^a-i g f_{bc}^{a}A_\mu^bA_\nu^c \]



역사



메모

"…That non-Abelian gauge fields are conceptually identical to ideas in the beautiful theory of fiber bundles, developed by the mathematicians without reference to the physical world, was a great marvel to me. In 1975 I discussed my feelings with Chern, and said, this is both thrilling and puzzling, since you mathematicians dreamed up these concepts out of nowhere." He immediately protested: "No, no. These concepts were not dreamed up. They were natural and real."

C. N. Yang; "magnetic monopoles, fiber bundles, and gauge fields’ Selected Papers C.N. Yang.


관련된 항목들


매스매티카 파일 및 계산 리소스


수학용어번역

  • gauge - 대한수학회 수학용어집



사전 형태의 자료



리뷰논문, 에세이, 강의노트

  • Hamilton, M. J. D. “The Higgs Boson for Mathematicians. Lecture Notes on Gauge Theory and Symmetry Breaking.” arXiv:1512.02632 [hep-Th], December 8, 2015. http://arxiv.org/abs/1512.02632.
  • Weatherall, James Owen. ‘Understanding Gauge’. arXiv:1505.02229 [physics], 9 May 2015. http://arxiv.org/abs/1505.02229.
  • Jordan, François, Lazzarini Serge, and Masson Thierry. 2014. “Gauge Field Theories: Various Mathematical Approaches.” arXiv:1404.4604 [hep-Th, Physics:math-Ph], April. http://arxiv.org/abs/1404.4604.
  • Samuel Marateck, The Differential Geometry and Physical Basis for the Applications of Feynman Diagrams http://arxiv.org/abs/physics/0603016

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'structure'}, {'LEMMA': 'constant'}]