"구면조화함수(spherical harmonics)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[구면조화함수(spherical harmonics)]]<br>
 
 
 
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
*  3차원 공간의 조화다항식을 구면에 restrict 하여 얻어지는 구면 위에 정의되는 함수를 일반적으로 구면조화함수라 함<br>
+
*  3차원 공간에서 정의된 조화다항식의 구면에 제한(restrict)하여 얻어지는 구면 위에 정의되는 함수를 일반적으로 구면조화함수라 함
* 3차원 회전군 SO(3)의  <math>L^2(S^2)</math> 에서의 표현론으로 이해<br>
+
* [[3차원 공간의 회전과 SO(3)|3차원 회전군 SO(3)]]의  <math>L^2(S^2)</math> 에서의 표현론으로 이해
*  양자역학에서 원자모형을 이해하는데 중요한 역할<br>
+
** <math>S^2=SO(3)/SO(2)</math>
** [[오비탈 각운동량]] 항목 참조<br>
+
*  양자역학에서 원자모형을 이해하는데 중요한 역할
 +
** [[오비탈 각운동량]] 항목 참조
  
 
+
  
 
+
  
 
==정의==
 
==정의==
 
+
* <math>l\in \mathbb{Z}_{\geq 0}</math>, <math>-l \leq m \leq l</math>에 대하여, <math>Y_{l}^{m}(\theta,\phi)</math>을 다음과 같이 정의
* <math>l\in \mathbb{Z}_{\geq 0}</math>, <math>-l \leq m \leq l</math>에 대하여, <math>Y_{l}^{m}(\theta,\phi)</math>
+
:<math>Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }</math>
* [[르장드르 다항식(associated Legendre polynomials)]] 통해서 다음과 같이 정의됨 :<math>Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }</math><br>
+
여기서 <math>P_l^m(x)</math>는 [[르장드르 다항식(associated Legendre polynomials)]]
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==테이블==
 
==테이블==
  
*  l=0<br>
+
*  l=0
  
 
<math>\left( \begin{array}{ccc}  0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)</math>
 
<math>\left( \begin{array}{ccc}  0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)</math>
  
*  l=1<br>
+
*  l=1
  
 
<math>\left( \begin{array}{ccc}  1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\  1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\  1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)</math>
 
<math>\left( \begin{array}{ccc}  1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\  1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\  1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)</math>
  
*  l=2<br>
+
*  l=2
  
 
<math>\left( \begin{array}{ccc}  2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\  2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\  2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)</math>
 
<math>\left( \begin{array}{ccc}  2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\  2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\  2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)</math>
  
*  l=3<br>
+
*  l=3
  
 
<math>\left( \begin{array}{ccc}  3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\  3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\  3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)</math>
 
<math>\left( \begin{array}{ccc}  3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\  3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\  3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)</math>
  
 
+
  
 
+
  
 
==내적==
 
==내적==
57번째 줄: 42번째 줄:
 
<math>\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.</math>
 
<math>\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.</math>
  
 
+
  
 
+
  
 
==단위구면의 라플라시안==
 
==단위구면의 라플라시안==
  
* [[구면(sphere)]], [[라플라시안(Laplacian)]]<br><math>\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}</math><br>
+
* [[구면(sphere)]], [[라플라시안(Laplacian)]]:<math>\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}</math>
*  구면조화함수는 라플라시안의 고유벡터이며, 고유치는 <math>-l(l+1)</math> 이다<br><math>\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}</math><br>
+
*  구면조화함수는 라플라시안의 고유벡터이며, 고유치는 <math>-l(l+1)</math> 이다:<math>\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}</math>
 
 
 
 
  
 
+
 +
==덧셈정리==
 +
* [http://staff.science.uva.nl/~thk/art/sheets/DigitalAge.pdf Algebraic methods: Lie groups, quantum groups]
 +
  
 
==각운동량 연산자==
 
==각운동량 연산자==
  
* [[오비탈 각운동량]]<br>
+
* [[오비탈 각운동량]]
* <math>L^2 Y_{l}^{m}=l(l+1)\hbar^2Y_{l}^{m}</math><br>
+
* <math>L^2 Y_{l}^{m}=l(l+1)\hbar^2Y_{l}^{m}</math>
* <math>L_z Y_{l}^{m}=m \hbar Y_{l}^{m}</math><br>
+
* <math>L_z Y_{l}^{m}=m \hbar Y_{l}^{m}</math>
  
 
+
  
 
여기서
 
여기서
84번째 줄: 70번째 줄:
 
<math>L_{z}=-i \hbar  \frac{\partial}{\partial \phi }</math>
 
<math>L_{z}=-i \hbar  \frac{\partial}{\partial \phi }</math>
  
 
+
  
 
+
  
 
==예==
 
==예==
  
* <math>l=3,m=1</math> 인 경우<br><math>Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)</math><br>
+
* <math>l=3,m=1</math> 인 경우:<math>Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)</math>
* <math>L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}</math><br>
+
* <math>L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}</math>
* <math>L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}</math><br>
+
* <math>L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}</math>
  
 
+
  
 
+
==3-j 기호(3-j symbols)의 관계==
 +
* http://physics.stackexchange.com/questions/10039/integral-of-the-product-of-three-spherical-harmonics
 +
:<math>
 +
\begin{align}
 +
& {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\
 +
&  =
 +
\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}}
 +
\begin{pmatrix}
 +
  l_1 & l_2 & l_3 \\[8pt]
 +
  0 & 0 & 0
 +
\end{pmatrix}
 +
\begin{pmatrix}
 +
  l_1 & l_2 & l_3\\
 +
  m_1 & m_2 & m_3
 +
\end{pmatrix}
 +
\end{align}
 +
</math>
 +
* [[3-j 기호(3-j symbols)]] 항목 참조
  
==역사==
+
==관련된 항목들==
 +
* [[구면(sphere)]]
 +
* [[르장드르 다항식]]
 +
* [[르장드르 다항식(associated Legendre polynomials)]]
  
* [[수학사연표 (역사)|수학사연표]]
 
  
 
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMjBjMTdjYTctZjA0NS00NGI0LThlZjEtMjZjMmU0ODRmOGY5&sort=name&layout=list&num=50
  
==메모==
 
  
 
 
  
 
+
==사전 형태의 자료==
  
==관련된 항목들==
+
* [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A1%B0%ED%99%94%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/구면조화함수]
 
+
* http://en.wikipedia.org/wiki/spherical_harmonics
* [[르장드르 다항식]]<br>
+
* http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
* [[구면(sphere)]]<br>
+
* http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
 
 
 
 
 
 
 
 
 
 
==매스매티카 파일 및 계산 리소스==
 
 
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMjBjMTdjYTctZjA0NS00NGI0LThlZjEtMjZjMmU0ODRmOGY5&sort=name&layout=list&num=50
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Dai, F., and Y. Xu. 2013. “Spherical Harmonics.” arXiv:1304.2585 (April 9). http://arxiv.org/abs/1304.2585.
 +
* Gross, Kenneth I. "On the evolution of noncommutative harmonic analysis." The American Mathematical Monthly 85.7 (1978): 525-548. http://www.joma.org/sites/default/files/pdf/upload_library/22/Ford/KennethGross.pdf
  
 
 
  
==수학용어번역==
+
==관련논문==
 +
* Cammarota, Valentina, and Igor Wigman. “Fluctuations of the Total Number of Critical Points of Random Spherical Harmonics.” arXiv:1510.00339 [math], October 1, 2015. http://arxiv.org/abs/1510.00339.
 +
* Achour, J. Ben, E. Huguet, J. Queva, and J. Renaud. ‘Explicit Vector Spherical Harmonics on the 3-Sphere’. arXiv:1505.03426 [gr-Qc, Physics:hep-Th, Physics:math-Ph], 13 May 2015. http://arxiv.org/abs/1505.03426.
 +
* Nazarov, Fedor, and Mikhail Sodin. “On the Number of Nodal Domains of Random Spherical Harmonics.” arXiv:0706.2409 [math-Ph], June 18, 2007. http://arxiv.org/abs/0706.2409.
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
[[분류:수리물리학]]
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
[[분류:리군과 리대수]]
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
[[분류:구면기하학]]
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
[[분류:특수함수]]
  
 
+
== 노트 ==
  
 
+
===말뭉치===
 +
# Spherical harmonic functions arise when the spherical coordinate system is used.<ref name="ref_f4c76d15">[https://www.britannica.com/science/spherical-harmonic Spherical harmonic | mathematics]</ref>
 +
# As the general function shows above, for the spherical harmonic where \(l = m = 0\), the bracketed term turns into a simple constant.<ref name="ref_50a7319e">[https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Quantum_Mechanics/07._Angular_Momentum/Spherical_Harmonics Spherical Harmonics]</ref>
 +
# It appears that for every even, angular QM number, the spherical harmonic is even.<ref name="ref_50a7319e" />
 +
# Consider the question of wanting to know the expectation value of our colatitudinal coordinate \(\theta\) for any given spherical harmonic with even-\(l\).<ref name="ref_50a7319e" />
 +
# (1 - x^{2})^{\tiny\dfrac{|m|}{2}}\dfrac{d^{|m|}}{dx^{|m|}}P_{l}(x)\) Using these recurrence relations, write the spherical harmonic \(Y_{1}^{1}(\theta,\phi)\).<ref name="ref_50a7319e" />
 +
# Thus, the object surface can be described via expanding these three spherical functions using spherical harmonics.<ref name="ref_f9bcf830">[https://www.sciencedirect.com/topics/computer-science/spherical-harmonic Spherical Harmonic - an overview]</ref>
 +
# B  Spherical Harmonics  SPHERICAL harmonics are a frequency-space basis for representing functions dened over  the sphere.<ref name="ref_b6c2b1a4">[https://cs.dartmouth.edu/wjarosz/publications/dissertation/appendixB.pdf B]</ref>
 +
# Spherical harmonics  arise in many physical problems ranging from the computation of atomic electron congurations  to the representation of gravitational and magnetic elds of planetary bodies.<ref name="ref_b6c2b1a4" />
 +
# In this appendix, we briey review the spherical harmonics as they relate to computer  graphics.<ref name="ref_b6c2b1a4" />
 +
# As their name suggests, the spherical harmonics are an innite set of harmonic functions dened  on the sphere.<ref name="ref_b6c2b1a4" />
 +
# The spherical harmonics are dened as the wave functions of angular mo- mentum eigenstates  Y m l (, ) = h, |l, mi.<ref name="ref_cfc5ef90">[http://hitoshi.berkeley.edu/221a/sphericalharmonics.pdf 221a lecture notes]</ref>
 +
# The latter equation is easy to solve: the azimuth dependence of the spherical harmonics must be eim.<ref name="ref_cfc5ef90" />
 +
# We can take the same strategy for the spherical harmonics.<ref name="ref_cfc5ef90" />
 +
# You can verify the orthonormality of spherical harmonics explicitly.<ref name="ref_cfc5ef90" />
 +
# One concludes that the spherical harmonics in the solution for the electron wavefunction in the hydrogen atom identify the angular momentum of the electron.<ref name="ref_85c0f0f8">[https://brilliant.org/wiki/spherical-harmonics/ Brilliant Math & Science Wiki]</ref>
 +
# As stated, spherical harmonics routinely arise in physical settings due to the prevalence of the Laplacian in many physical equations.<ref name="ref_85c0f0f8" />
 +
# Find the potential in terms of spherical harmonics in all of space ( r < R (r<R (r<R and r > R ) .<ref name="ref_85c0f0f8" />
 +
# The angular dependence at r = R r=R r=R solved for above in terms of spherical harmonics is therefore the angular dependence everywhere.<ref name="ref_85c0f0f8" />
 +
# The completeness property of the spherical harmonics implies that any well-behaved function of  and  can be written as      f (, ) =  amY m  (, ) .<ref name="ref_c2c7a3a4">[http://scipp.ucsc.edu/~haber/ph116C/SphericalHarmonics_12.pdf Physics 116c]</ref>
 +
# r 3 4  r  1 4r  15 2  15 8  5 4  r 1 2r  3      The corresponding spherical harmonics for negative values of m are obtained using eq.<ref name="ref_c2c7a3a4" />
 +
# ,  (13)  which relates the Legendre polynomials to the spherical harmonics with m = 0.<ref name="ref_c2c7a3a4" />
 +
# (14) and (15) imply that:  That is, the spherical harmonics are eigenfunctions of the dierential operator ~L2, with corresponding eigenvalues ( + 1), for  = 0, 1, 2, 3, . .<ref name="ref_c2c7a3a4" />
 +
# Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right.<ref name="ref_e431a384">[https://en.wikipedia.org/wiki/Spherical_harmonics Spherical harmonics]</ref>
 +
# Spherical harmonics originates from solving Laplace's equation in the spherical domains.<ref name="ref_e431a384" />
 +
# Many aspects of the theory of Fourier series could be generalized by taking expansions in spherical harmonics rather than trigonometric functions.<ref name="ref_e431a384" />
 +
# Moreover, analogous to how trigonometric functions can equivalently be written as complex exponentials, spherical harmonics also possessed an equivalent form as complex-valued functions.<ref name="ref_e431a384" />
 +
# The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.<ref name="ref_76352612">[https://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld]</ref>
 +
# Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular part of Laplace's equation in spherical coordinates.<ref name="ref_76352612" />
 +
# Sometimes (e.g., Arfken 1985), the Condon-Shortley phase is prepended to the definition of the spherical harmonics.<ref name="ref_76352612" />
 +
# Nevertheless, given the importance of spherical harmonics in many applications, Spherefun allows one to compute with spherical harmonics.<ref name="ref_9720eac7">[https://www.chebfun.org/examples/sphere/SphericalHarmonics.html Spherical harmonics]</ref>
 +
# In this and the next four sections we discuss some properties of spherical harmonics and show how Spherefun can be used to easily verify them.<ref name="ref_9720eac7" />
 +
# The command sphharm constructs a spherical harmonic of a given degree and order.<ref name="ref_9720eac7" />
 +
# Black contour lines have been included indicating the zero curves of each spherical harmonic, which highlights their transition from positive to negative values.<ref name="ref_9720eac7" />
 +
# Moreover, being real, they have half the memory requirement of complex spherical harmonics.<ref name="ref_ae675c8e">[https://docs.abinit.org/theory/spherical_harmonics/ Spherical Harmonics]</ref>
 +
# The basic properties of RSH can be easily derived from the properties of complex spherical harmonics by means of \ref{eq:Definition_real_harmonics}.<ref name="ref_ae675c8e" />
 +
# In a similar way, the electrostatic potentials can be expanded in a real spherical harmonics basis set.<ref name="ref_ae675c8e" />
 +
# We use a specific set of spherical harmonics, denoted Y^m_l(\theta,\phi) called Laplace's spherical harmonics.<ref name="ref_db682527">[https://patapom.com/blog/SHPortal/ Spherical Harmonics]</ref>
 +
# Geophysical analyses are often performed in spherical geometry and require the use of spherical harmonic functions to express observables or physical quantities.<ref name="ref_c618988c">[https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GC007529 SHTools: Tools for Working with Spherical Harmonics]</ref>
 +
# When expanded to high degree, the accuracy and speed of the spherical harmonic transforms and reconstructions are of paramount importance.<ref name="ref_c618988c" />
 +
# SHTools is a time and user‐tested open‐source archive of both Fortran 95 and Python routines for performing spherical harmonic analyses.<ref name="ref_c618988c" />
 +
# The spherical‐harmonic transforms are proven to be fast and accurate for spherical harmonic degrees up to 2800.<ref name="ref_c618988c" />
 +
# This relation is easily extended to spherical geometry using the orthogonality properties of the spherical harmonic functions.<ref name="ref_a0fc3404">[https://shtools.github.io/SHTOOLS/real-spherical-harmonics.html Real spherical harmonics]</ref>
 +
# \(S\) is the total power of the function at spherical harmonic degree \(l\), which in pyshtools is called the power per degree \(l\).<ref name="ref_a0fc3404" />
 +
# Alternatively, one can calculate the average power per coefficient at spherical harmonic degree \(l\), which in pyshtools is referred to as the power per \(lm\).<ref name="ref_a0fc3404" />
 +
# \end{equation} One can also calculate the power from all angular orders over an infinitesimal logarithmic spherical harmonic degree band \(d \log_a l\), where \(a\) is the logarithmic base.<ref name="ref_a0fc3404" />
 +
# For each spherical harmonic, we plot its value on the surface of a sphere, and then in polar.<ref name="ref_b995e756">[https://docs.enthought.com/mayavi/mayavi/auto/example_spherical_harmonics.html Spherical harmonics example — mayavi 4.7.2 documentation]</ref>
 +
# This is especially true when it comes to rotations of spherical harmonics (much of the literature is math-dense and contains errata).<ref name="ref_40441a61">[https://github.com/google/spherical-harmonics google/spherical-harmonics: Spherical harmonics library]</ref>
 +
# This library is a collection of useful functions for working with spherical harmonics.<ref name="ref_40441a61" />
 +
# It can be computed quickly by estimating the standard diffuse cosine-lobe as a vector of coefficients, and the environment as spherical harmonics.<ref name="ref_40441a61" />
 +
# Rotation - Object type that computes the transformation matrices that suitably transform spherical harmonic coefficients given a quaternion rotation.<ref name="ref_40441a61" />
 +
# In quantum mechanics spherical harmonics appear as eigenfunctions of (squared) orbital angular momentum.<ref name="ref_e5a0b30c">[https://en.citizendium.org/wiki/Spherical_harmonics encyclopedia article]</ref>
 +
# The geodesy and magnetics communities never include the Condon-Shortley phase factor in their definitions of the spherical harmonic functions.<ref name="ref_e5a0b30c" />
 +
# For example, a space with an odd number of dimensions (2ℓ+1) can be constructed from the spherical harmonics Y ℓ m, and their transformations under infinitesimal rotations.<ref name="ref_e5a0b30c" />
 +
# 6 Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors ,” IEEE/ACM Trans.<ref name="ref_d6802755">[https://asa.scitation.org/doi/10.1121/1.5090197 Spatial sound intensity vectors in spherical harmonic domain]</ref>
 +
# To improve the accuracy of DOA estimation, an augmented intensity vector is proposed by exploiting higher order spherical harmonics.<ref name="ref_d6802755" />
 +
# In such instances, spherical harmonics can play a role because they cover the entire space together with the radial functions.<ref name="ref_d6802755" />
 +
# Therefore, if we can generate a spherical harmonic decomposition of the spatial sound intensity, the sound intensity at any point in space is readily available.<ref name="ref_d6802755" />
 +
# Spherical harmonics are functions that arise in physics and mathematics in the study of the same kind of systems as for which spherical polar coordinates (r, θ, and φ) are useful.<ref name="ref_aa0403ec">[https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Spherical_harmonics.html Spherical harmonics]</ref>
 +
# The spherical harmonic functions depend on the spherical polar angles θ and φ and form an (infinite) complete set of orthogonal, normalizable functions.<ref name="ref_aa0403ec" />
 +
# As stated, the spherical harmonics—almost always written as Y m ℓ (θ, φ)—form an orthogonal and complete set.<ref name="ref_aa0403ec" />
 +
# The spherical harmonic functions can be used to describe a function of θ and φ in the form of a linear expansion.<ref name="ref_aa0403ec" />
 +
# Our spherical harmonics therefore span L2.<ref name="ref_5cad4f2c">[http://www.ohiouniversityfaculty.com/mohlenka/research/uguide.pdf A user’s guide to spherical harmonics]</ref>
 +
# We would like to nd the conditions on P m  n to make (13) a set of (smooth) spherical harmonics.<ref name="ref_5cad4f2c" />
 +
# The aliasing of spherical harmonics follows the Fourier rules in , and is similar to the reective aliasing in .<ref name="ref_5cad4f2c" />
 +
# It provides a brief  overview of spherical harmonics (SH) and discusses several ways they can be used in interactive  graphics and problems that might arise.<ref name="ref_1bab9869">[https://www.ppsloan.org/publications/StupidSH36.pdf Stupid spherical harmonics (sh) ]</ref>
 +
# While spherical harmonics may seem somewhat daunting, they are actually straightforward.<ref name="ref_1bab9869" />
 +
# Check the condition of the transformation between DWIs and spherical harmonics.<ref name="ref_1637a781">[https://mrtrix.readthedocs.io/en/latest/concepts/sh_basis_lmax.html Maximum spherical harmonic degree lmax — MRtrix 3.0 documentation]</ref>
 +
# The data are transformed not to the spherical harmonic basis, but directly to the zonal spherical harmonic basis (this is the spherical harmonic basis containing only the m = 0 terms).<ref name="ref_1637a781" />
 +
# The spherical harmonic series therefore provides a compact represention for smooth functions on the sphere.<ref name="ref_ccfa6424">[http://userdocs.mrtrix.org/en/latest/concepts/spherical_harmonics.html Spherical Harmonics — MRtrix 3.0 documentation]</ref>
 +
# Spherical harmonics are special functions defined on the surface of a sphere.<ref name="ref_ccfa6424" />
 +
# That question is " I just want a function for the sphere (in spherical coordinates so I can expand it in terms of the spherical harmonics).<ref name="ref_54236ba5">[https://math.stackexchange.com/questions/1003620/spherical-harmonic-expansion-of-a-sphere Spherical harmonic expansion of a sphere]</ref>
 +
# But that to say in difficult problems the use of spherical harmonics is laborious is not to slight the method, because any other accurate treatment would be still more difficult.<ref name="ref_28ecf4e8">[https://www.cambridge.org/core/books/potential-theory-in-gravity-and-magnetic-applications/spherical-harmonic-analysis/8454323C07A60AEE256AC6369ECC7D6F Potential Theory in Gravity and Magnetic Applications]</ref>
 +
# At the very least, spherical harmonic analysis provides a way to synthesize from a scatter of discrete measurements on a sphere an equation applicable to the entire sphere.<ref name="ref_28ecf4e8" />
 +
# In particular, the various terms of a spherical harmonic expansion are sometimes related (with caution) to specific physical phenomena.<ref name="ref_28ecf4e8" />
 +
# In places they can be rotated to the true spherical harmonics .<ref name="ref_1ac1ed88">[https://www.questaal.org/docs/numerics/spherical_harmonics/ Spherical Harmonics]</ref>
 +
# (10) gives the transformation of an eigenvector between real and spherical harmonics.<ref name="ref_1ac1ed88" />
 +
# Each term can be re-expressed in spherical harmonics through the rotation in the first expression, Eq.<ref name="ref_1ac1ed88" />
 +
# We consider a pair linear combinations of spherical harmonics derived from the operator acting on a single function.<ref name="ref_1ac1ed88" />
 +
# The spherical harmonic is evaluated at the spherical coordinate (theta,phi) on the unit sphere in S^2.<ref name="ref_99c41562">[https://rdrr.io/github/nishanmudalige/s.harmonic/man/spherical.harmonic.html spherical.harmonic: A function to calculate the real spherical harmonics in nishanmudalige]</ref>
 +
# Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.<ref name="ref_3379a72b">[https://www.ncl.ucar.edu/Document/Functions/spherical.shtml NCL Function Documentation: Spherical harmonic routines]</ref>
 +
# dv2uvf Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.<ref name="ref_3379a72b" />
 +
# dv2uvF_Wrap Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics and retains metadata.<ref name="ref_3379a72b" />
 +
# dv2uvg Computes the divergent (irrotational) wind components for a gaussian grid via spherical harmonics.<ref name="ref_3379a72b" />
 +
# Spherical harmonics basis functions are used for parametrisation.<ref name="ref_007a9f3a">[https://www.hindawi.com/journals/mpe/2015/582870/ Spherical Harmonics for Surface Parametrisation and Remeshing]</ref>
 +
# This involves least squares fitting of spherical harmonics basis functions to the surface mesh.<ref name="ref_007a9f3a" />
 +
# This paper proposes a technique for parametrising 3D meshes for remeshing which uses the theory of spherical harmonics to approximate a continuous surface.<ref name="ref_007a9f3a" />
 +
# Spherical harmonics are a natural basis for representing functions defined over spherical and hemispherical domains.<ref name="ref_007a9f3a" />
 +
# Several normalizations for the spherical harmonics exist (details on wikipedia).<ref name="ref_0c932591">[https://www2.atmos.umd.edu/~dkleist/docs/shtns/doc/html/spec.html SHTns: Spherical Harmonics storage and normalization]</ref>
 +
# Use shtns_create with SHT_REAL_NORM to use a "real" spherical harmonic normalization.<ref name="ref_0c932591" />
 +
# This is the usual "real" spherical harmonics, if one takes the complex conjugate of the coefficients.<ref name="ref_0c932591" />
 +
===소스===
 +
<references />
  
==사전 형태의 자료==
+
== 메타데이터 ==
  
* [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A1%B0%ED%99%94%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/구면조화함수]
+
===위키데이터===
* http://en.wikipedia.org/wiki/spherical_harmonics
+
* ID :  [https://www.wikidata.org/wiki/Q877100 Q877100]
* http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
+
===Spacy 패턴 목록===
* http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
+
* [{'LOWER': 'spherical'}, {'LEMMA': 'harmonic'}]
* http://www.wolframalpha.com/input/?i=spherical+harmonics
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 

2021년 2월 22일 (월) 20:46 기준 최신판

개요

  • 3차원 공간에서 정의된 조화다항식의 구면에 제한(restrict)하여 얻어지는 구면 위에 정의되는 함수를 일반적으로 구면조화함수라 함
  • 3차원 회전군 SO(3)의 \(L^2(S^2)\) 에서의 표현론으로 이해
    • \(S^2=SO(3)/SO(2)\)
  • 양자역학에서 원자모형을 이해하는데 중요한 역할



정의

  • \(l\in \mathbb{Z}_{\geq 0}\), \(-l \leq m \leq l\)에 대하여, \(Y_{l}^{m}(\theta,\phi)\)을 다음과 같이 정의

\[Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }\] 여기서 \(P_l^m(x)\)는 르장드르 다항식(associated Legendre polynomials)

테이블

  • l=0

\(\left( \begin{array}{ccc} 0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)\)

  • l=1

\(\left( \begin{array}{ccc} 1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\ 1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\ 1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)\)

  • l=2

\(\left( \begin{array}{ccc} 2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\ 2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\ 2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)\)

  • l=3

\(\left( \begin{array}{ccc} 3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\ 3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\ 3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)\)



내적

\(\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.\)



단위구면의 라플라시안

  • 구면(sphere), 라플라시안(Laplacian)\[\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}\]
  • 구면조화함수는 라플라시안의 고유벡터이며, 고유치는 \(-l(l+1)\) 이다\[\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}\]


덧셈정리


각운동량 연산자


여기서

\(L^2=-\hbar ^2 \left(\frac{1}{\sin ^2(\theta )}\frac{\partial^2}{\partial \phi^2}+\frac{1}{\sin (\theta )} \frac{\partial }{\partial \theta }\left(\sin (\theta ) \frac{\partial}{\partial \theta }\right)\right)\)

\(L_{z}=-i \hbar \frac{\partial}{\partial \phi }\)



  • \(l=3,m=1\) 인 경우\[Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)\]
  • \(L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}\)
  • \(L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}\)


3-j 기호(3-j symbols)의 관계

\[ \begin{align} & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} \]

관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Cammarota, Valentina, and Igor Wigman. “Fluctuations of the Total Number of Critical Points of Random Spherical Harmonics.” arXiv:1510.00339 [math], October 1, 2015. http://arxiv.org/abs/1510.00339.
  • Achour, J. Ben, E. Huguet, J. Queva, and J. Renaud. ‘Explicit Vector Spherical Harmonics on the 3-Sphere’. arXiv:1505.03426 [gr-Qc, Physics:hep-Th, Physics:math-Ph], 13 May 2015. http://arxiv.org/abs/1505.03426.
  • Nazarov, Fedor, and Mikhail Sodin. “On the Number of Nodal Domains of Random Spherical Harmonics.” arXiv:0706.2409 [math-Ph], June 18, 2007. http://arxiv.org/abs/0706.2409.

노트

말뭉치

  1. Spherical harmonic functions arise when the spherical coordinate system is used.[1]
  2. As the general function shows above, for the spherical harmonic where \(l = m = 0\), the bracketed term turns into a simple constant.[2]
  3. It appears that for every even, angular QM number, the spherical harmonic is even.[2]
  4. Consider the question of wanting to know the expectation value of our colatitudinal coordinate \(\theta\) for any given spherical harmonic with even-\(l\).[2]
  5. (1 - x^{2})^{\tiny\dfrac{|m|}{2}}\dfrac{d^{|m|}}{dx^{|m|}}P_{l}(x)\) Using these recurrence relations, write the spherical harmonic \(Y_{1}^{1}(\theta,\phi)\).[2]
  6. Thus, the object surface can be described via expanding these three spherical functions using spherical harmonics.[3]
  7. B Spherical Harmonics SPHERICAL harmonics are a frequency-space basis for representing functions dened over the sphere.[4]
  8. Spherical harmonics arise in many physical problems ranging from the computation of atomic electron congurations to the representation of gravitational and magnetic elds of planetary bodies.[4]
  9. In this appendix, we briey review the spherical harmonics as they relate to computer graphics.[4]
  10. As their name suggests, the spherical harmonics are an innite set of harmonic functions dened on the sphere.[4]
  11. The spherical harmonics are dened as the wave functions of angular mo- mentum eigenstates Y m l (, ) = h, |l, mi.[5]
  12. The latter equation is easy to solve: the azimuth dependence of the spherical harmonics must be eim.[5]
  13. We can take the same strategy for the spherical harmonics.[5]
  14. You can verify the orthonormality of spherical harmonics explicitly.[5]
  15. One concludes that the spherical harmonics in the solution for the electron wavefunction in the hydrogen atom identify the angular momentum of the electron.[6]
  16. As stated, spherical harmonics routinely arise in physical settings due to the prevalence of the Laplacian in many physical equations.[6]
  17. Find the potential in terms of spherical harmonics in all of space ( r < R (r<R (r<R and r > R ) .[6]
  18. The angular dependence at r = R r=R r=R solved for above in terms of spherical harmonics is therefore the angular dependence everywhere.[6]
  19. The completeness property of the spherical harmonics implies that any well-behaved function of and can be written as f (, ) = amY m (, ) .[7]
  20. r 3 4 r 1 4r 15 2 15 8 5 4 r 1 2r 3 The corresponding spherical harmonics for negative values of m are obtained using eq.[7]
  21. , (13) which relates the Legendre polynomials to the spherical harmonics with m = 0.[7]
  22. (14) and (15) imply that: That is, the spherical harmonics are eigenfunctions of the dierential operator ~L2, with corresponding eigenvalues ( + 1), for = 0, 1, 2, 3, . .[7]
  23. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right.[8]
  24. Spherical harmonics originates from solving Laplace's equation in the spherical domains.[8]
  25. Many aspects of the theory of Fourier series could be generalized by taking expansions in spherical harmonics rather than trigonometric functions.[8]
  26. Moreover, analogous to how trigonometric functions can equivalently be written as complex exponentials, spherical harmonics also possessed an equivalent form as complex-valued functions.[8]
  27. The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.[9]
  28. Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular part of Laplace's equation in spherical coordinates.[9]
  29. Sometimes (e.g., Arfken 1985), the Condon-Shortley phase is prepended to the definition of the spherical harmonics.[9]
  30. Nevertheless, given the importance of spherical harmonics in many applications, Spherefun allows one to compute with spherical harmonics.[10]
  31. In this and the next four sections we discuss some properties of spherical harmonics and show how Spherefun can be used to easily verify them.[10]
  32. The command sphharm constructs a spherical harmonic of a given degree and order.[10]
  33. Black contour lines have been included indicating the zero curves of each spherical harmonic, which highlights their transition from positive to negative values.[10]
  34. Moreover, being real, they have half the memory requirement of complex spherical harmonics.[11]
  35. The basic properties of RSH can be easily derived from the properties of complex spherical harmonics by means of \ref{eq:Definition_real_harmonics}.[11]
  36. In a similar way, the electrostatic potentials can be expanded in a real spherical harmonics basis set.[11]
  37. We use a specific set of spherical harmonics, denoted Y^m_l(\theta,\phi) called Laplace's spherical harmonics.[12]
  38. Geophysical analyses are often performed in spherical geometry and require the use of spherical harmonic functions to express observables or physical quantities.[13]
  39. When expanded to high degree, the accuracy and speed of the spherical harmonic transforms and reconstructions are of paramount importance.[13]
  40. SHTools is a time and user‐tested open‐source archive of both Fortran 95 and Python routines for performing spherical harmonic analyses.[13]
  41. The spherical‐harmonic transforms are proven to be fast and accurate for spherical harmonic degrees up to 2800.[13]
  42. This relation is easily extended to spherical geometry using the orthogonality properties of the spherical harmonic functions.[14]
  43. \(S\) is the total power of the function at spherical harmonic degree \(l\), which in pyshtools is called the power per degree \(l\).[14]
  44. Alternatively, one can calculate the average power per coefficient at spherical harmonic degree \(l\), which in pyshtools is referred to as the power per \(lm\).[14]
  45. \end{equation} One can also calculate the power from all angular orders over an infinitesimal logarithmic spherical harmonic degree band \(d \log_a l\), where \(a\) is the logarithmic base.[14]
  46. For each spherical harmonic, we plot its value on the surface of a sphere, and then in polar.[15]
  47. This is especially true when it comes to rotations of spherical harmonics (much of the literature is math-dense and contains errata).[16]
  48. This library is a collection of useful functions for working with spherical harmonics.[16]
  49. It can be computed quickly by estimating the standard diffuse cosine-lobe as a vector of coefficients, and the environment as spherical harmonics.[16]
  50. Rotation - Object type that computes the transformation matrices that suitably transform spherical harmonic coefficients given a quaternion rotation.[16]
  51. In quantum mechanics spherical harmonics appear as eigenfunctions of (squared) orbital angular momentum.[17]
  52. The geodesy and magnetics communities never include the Condon-Shortley phase factor in their definitions of the spherical harmonic functions.[17]
  53. For example, a space with an odd number of dimensions (2ℓ+1) can be constructed from the spherical harmonics Y ℓ m, and their transformations under infinitesimal rotations.[17]
  54. 6 Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors ,” IEEE/ACM Trans.[18]
  55. To improve the accuracy of DOA estimation, an augmented intensity vector is proposed by exploiting higher order spherical harmonics.[18]
  56. In such instances, spherical harmonics can play a role because they cover the entire space together with the radial functions.[18]
  57. Therefore, if we can generate a spherical harmonic decomposition of the spatial sound intensity, the sound intensity at any point in space is readily available.[18]
  58. Spherical harmonics are functions that arise in physics and mathematics in the study of the same kind of systems as for which spherical polar coordinates (r, θ, and φ) are useful.[19]
  59. The spherical harmonic functions depend on the spherical polar angles θ and φ and form an (infinite) complete set of orthogonal, normalizable functions.[19]
  60. As stated, the spherical harmonics—almost always written as Y m ℓ (θ, φ)—form an orthogonal and complete set.[19]
  61. The spherical harmonic functions can be used to describe a function of θ and φ in the form of a linear expansion.[19]
  62. Our spherical harmonics therefore span L2.[20]
  63. We would like to nd the conditions on P m n to make (13) a set of (smooth) spherical harmonics.[20]
  64. The aliasing of spherical harmonics follows the Fourier rules in , and is similar to the reective aliasing in .[20]
  65. It provides a brief overview of spherical harmonics (SH) and discusses several ways they can be used in interactive graphics and problems that might arise.[21]
  66. While spherical harmonics may seem somewhat daunting, they are actually straightforward.[21]
  67. Check the condition of the transformation between DWIs and spherical harmonics.[22]
  68. The data are transformed not to the spherical harmonic basis, but directly to the zonal spherical harmonic basis (this is the spherical harmonic basis containing only the m = 0 terms).[22]
  69. The spherical harmonic series therefore provides a compact represention for smooth functions on the sphere.[23]
  70. Spherical harmonics are special functions defined on the surface of a sphere.[23]
  71. That question is " I just want a function for the sphere (in spherical coordinates so I can expand it in terms of the spherical harmonics).[24]
  72. But that to say in difficult problems the use of spherical harmonics is laborious is not to slight the method, because any other accurate treatment would be still more difficult.[25]
  73. At the very least, spherical harmonic analysis provides a way to synthesize from a scatter of discrete measurements on a sphere an equation applicable to the entire sphere.[25]
  74. In particular, the various terms of a spherical harmonic expansion are sometimes related (with caution) to specific physical phenomena.[25]
  75. In places they can be rotated to the true spherical harmonics .[26]
  76. (10) gives the transformation of an eigenvector between real and spherical harmonics.[26]
  77. Each term can be re-expressed in spherical harmonics through the rotation in the first expression, Eq.[26]
  78. We consider a pair linear combinations of spherical harmonics derived from the operator acting on a single function.[26]
  79. The spherical harmonic is evaluated at the spherical coordinate (theta,phi) on the unit sphere in S^2.[27]
  80. Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.[28]
  81. dv2uvf Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics.[28]
  82. dv2uvF_Wrap Computes the divergent (irrotational) wind components for a fixed grid via spherical harmonics and retains metadata.[28]
  83. dv2uvg Computes the divergent (irrotational) wind components for a gaussian grid via spherical harmonics.[28]
  84. Spherical harmonics basis functions are used for parametrisation.[29]
  85. This involves least squares fitting of spherical harmonics basis functions to the surface mesh.[29]
  86. This paper proposes a technique for parametrising 3D meshes for remeshing which uses the theory of spherical harmonics to approximate a continuous surface.[29]
  87. Spherical harmonics are a natural basis for representing functions defined over spherical and hemispherical domains.[29]
  88. Several normalizations for the spherical harmonics exist (details on wikipedia).[30]
  89. Use shtns_create with SHT_REAL_NORM to use a "real" spherical harmonic normalization.[30]
  90. This is the usual "real" spherical harmonics, if one takes the complex conjugate of the coefficients.[30]

소스

  1. Spherical harmonic | mathematics
  2. 2.0 2.1 2.2 2.3 Spherical Harmonics
  3. Spherical Harmonic - an overview
  4. 4.0 4.1 4.2 4.3 B
  5. 5.0 5.1 5.2 5.3 221a lecture notes
  6. 6.0 6.1 6.2 6.3 Brilliant Math & Science Wiki
  7. 7.0 7.1 7.2 7.3 Physics 116c
  8. 8.0 8.1 8.2 8.3 Spherical harmonics
  9. 9.0 9.1 9.2 Spherical Harmonic -- from Wolfram MathWorld
  10. 10.0 10.1 10.2 10.3 Spherical harmonics
  11. 11.0 11.1 11.2 Spherical Harmonics
  12. Spherical Harmonics
  13. 13.0 13.1 13.2 13.3 SHTools: Tools for Working with Spherical Harmonics
  14. 14.0 14.1 14.2 14.3 Real spherical harmonics
  15. Spherical harmonics example — mayavi 4.7.2 documentation
  16. 16.0 16.1 16.2 16.3 google/spherical-harmonics: Spherical harmonics library
  17. 17.0 17.1 17.2 encyclopedia article
  18. 18.0 18.1 18.2 18.3 Spatial sound intensity vectors in spherical harmonic domain
  19. 19.0 19.1 19.2 19.3 Spherical harmonics
  20. 20.0 20.1 20.2 A user’s guide to spherical harmonics
  21. 21.0 21.1 Stupid spherical harmonics (sh)
  22. 22.0 22.1 Maximum spherical harmonic degree lmax — MRtrix 3.0 documentation
  23. 23.0 23.1 Spherical Harmonics — MRtrix 3.0 documentation
  24. Spherical harmonic expansion of a sphere
  25. 25.0 25.1 25.2 Potential Theory in Gravity and Magnetic Applications
  26. 26.0 26.1 26.2 26.3 Spherical Harmonics
  27. spherical.harmonic: A function to calculate the real spherical harmonics in nishanmudalige
  28. 28.0 28.1 28.2 28.3 NCL Function Documentation: Spherical harmonic routines
  29. 29.0 29.1 29.2 29.3 Spherical Harmonics for Surface Parametrisation and Remeshing
  30. 30.0 30.1 30.2 SHTns: Spherical Harmonics storage and normalization

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'spherical'}, {'LEMMA': 'harmonic'}]