군론(group theory)

수학노트
이동: 둘러보기, 검색

개요

  • 대칭(symmetry)에 대한 수학적인 언어



입문



군을 만드는 기본적인 방법

  • 집합 \(S\)에서 자기자신으로 가는 모든(때로는 어떤 특정한 조건을더 만족시키는) 전단사함수(bijection or automorphism)들의 모임은 군을 이룸.
  • 아래는 예
  • 대칭군 (symmetric group) \(S_n\)
    • 원소의 개수가 n인 집합의 전단사함수들의 모임
    • \(n!\) 개의 원소가 존재함
  • general linear group \(\operatorname{GL}(n, \mathbb{F})\)
    • 벡터공간 \(\mathbb F^2\) 의 linear automorphism 들을 모두 모아 이루어진 군



기본적인 용어들

  • 부분군
    • 군의 부분집합이며 그 자체로 군을 이루는 경우, 부분군이라 함.
  • 준동형사상(homomorphism)
    • 두 군 사이에 주어진 사상 \(\rho \colon G \to G'\)이, \(G\)의 임의의 두 원소 \(g_1,g_2\) 에 대하여, \(\rho(g_1 g_2) = \rho(g_1) \rho(g_2)\) 를 만족시키면, 준동형사상이라 함.
    • 군과 군 사이에 정의된 함수중에서 군의 구조를 보존하는 함수들
  • kernel
    • homomorhism 이 있을때, 정의역의 원소 중 항등원으로 보내지는 녀석들을 모두 모으면 군을 이루는데 이를 homomorphism의 kernel 이라 함



가해군(solvable group)



하위페이지




관련된 항목들

리뷰, 에세이, 강의노트

  • V. D. Mazurov, E. I. Khukhro, Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version), arXiv:1401.0300[math.GR], January 01 2014, http://arxiv.org/abs/1401.0300v8