그라스만 다양체

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • Gr_{nk} = k-plane in n-space
  • 실 그라스만 다양체\[Gr_{kn}(\mathbb{R}) = \{V\subset \mathbb{R}^n | \dim V = k\}\]
  • rank가 k인 k x n 행렬로 그라스만 다양체의 한 점을 표현할 수 있다



Plücker embedding

  • 그라스만 다양체를 사영공간으로 embedding
  • \(Gr_{kn}(\mathbb{R}) \to \mathbb{P}^{N-1}\) 여기서 \(N=\binom{n}{k}\).
  • Plücker 좌표 \(\Delta_{I}(A)\) = determinant of submatrix of A with column set I



Gr(2,4) 의 예

  • 4차원 다양체
  • 다양체 위의 한점은 다음과 같은 형태의 rank가 2인 행렬로 나타낼 수 있다\[\left( \begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \end{array} \right)\]
  • Plücker embedding \(Gr_{24}(\mathbb{R}) \to \mathbb{P}^{5}\)
  • Plücker 좌표\[\begin{array}{l} \Delta _{1,2}=a_{1,1} a_{2,2}-a_{1,2} a_{2,1} \\ \Delta _{1,3}=a_{1,1} a_{2,3}-a_{1,3} a_{2,1} \\ \Delta _{1,4}=a_{1,1} a_{2,4}-a_{1,4} a_{2,1} \\ \Delta _{2,3}=a_{1,2} a_{2,3}-a_{1,3} a_{2,2} \\ \Delta _{2,4}=a_{1,2} a_{2,4}-a_{1,4} a_{2,2} \\ \Delta _{3,4}=a_{1,3} a_{2,4}-a_{1,4} a_{2,3} \end{array}\]
  • Plücker 관계식\[\Delta_{1,2}\Delta_{3,4}-\Delta_{1,3}\Delta_{2,4}+\Delta_{1,4}\Delta_{2,3}=0\] 또는 \(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)톨레미의 정리



메모



관련된 항목들



사전 형태의 자료



리뷰논문, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'Grassmannian'}]
  • [{'LOWER': 'grassmann'}, {'LEMMA': 'manifold'}]