다이감마 함수(digamma function)

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 27일 (목) 19:46 판 (피타고라스님이 이 페이지의 이름을 다이감마 함수(digamma function)로 바꾸었습니다.)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • 감마함수의 로그미분으로 정의

 

 

정의와 급수표현
  • 정의
    \(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)
  • 급수표현
    \(\psi(z)=-\frac{1}{z} -\gamma +\sum_{n=1}^\infty \frac{z}{n(n+z)} , z \neq 0, -1, -2, -3, \cdots\)

(증명)

감마함수의 무한곱표현

\(\Gamma(z) &= \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\)

위의 식에 로그미분을 취하여 얻는다. ■

 

  • \(z = 0, -1, -2, -3, \cdots\) 에서 pole을 가진다

 

 

함수의 그래프
  • \(-5<x<5\)일 때, \(\psi(x)\)의 그래프
    [/pages/3767493/attachments/3141571 digamma.jpg]

 

 

도함수와 polygamma 함수
  • trigamma
    \(\psi'(z)=\frac{1}{x^2}+\sum_{n=1}^\infty \frac{1}{(n+z)^2}\)
  • tetragamma \(\psi''(z)\)
  • pentagamma \(\psi^{(3)}(z)\)

 

 

 

차분방정식과의 관계

\(\psi(x + 1) - \psi(x) = \frac{1}{x}\)

  • 차분방정식의 기본정리를 적용하면
    \(\sum_{n=a}^{b-1}\frac{1}{n}=\psi(b)-\psi(a)\)
  • 조화급수와의 관계
    \(\sum_{n=1}^{N}\frac{1}{n}=\psi(N+1)-\psi(1)=\psi(N+1)-\gamma\)
  • 일반화
    \(\psi^{(n)}(x+1)-\psi^{(n)}(x)=\frac{(-1)^n n!}{x^{n+1}}\)

 

 

asymptotic series
  • 급수표현
    \(\psi(x) = \log(x) - \frac{1}{2x} - \sum_{n=1}^\infty \frac{B_{2n}}{2n(x^{2n})}\)
    \(\psi(x) = \log(x) - \frac{1}{2x} + \sum_{n=1}^\infty \frac{\zeta(1-2n)}{x^{2n}}\)
  • 베르누이 수

 

 

반사공식
  • 감마함수의 반사공식
    \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
  • 위의 식을 로그미분하여 다음을 얻는다

\(\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }\)

여기서 \(x\)를 \(-x\)로 두면 다음을 얻는다

\(\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }\)

 

 

덧셈공식
  • 이항 덧셈공식
    \(\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2\)

(증명)

감마함수의 곱셈공식 

\(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\)

로그를 취하면

\((2\ln 2)x+\ln \Gamma(x) +\ln \Gamma\left(x + \frac{1}{2}\right) = \ln 2\sqrt{\pi}+\ln \Gamma(2x)\)

미분하면,

\(\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2\) ■

 

 

 

가우스의 Digamma 정리

\(\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k) -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)\)

\(\psi\left(1-\frac{m}{k}\right) = -\gamma -\ln(2k) +\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)\)

 

 

 

special values

\(\psi(1) = -\gamma\,\!\)

\(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)

\(\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{2}{3}\right) = -\frac{\pi}{2\sqrt{3}} +\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{3}{4}\right) = \frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{1}{5}\right) =- \gamma-\frac{\pi}{2}\sqrt{1+\frac{2}{5}\sqrt{5}}-\frac{5}{4}\ln 5-\frac{\sqrt{5}}{4}\ln\frac{1}{2}(3+\sqrt{5})\)

\(\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)

\(\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma\)

 

 

 

재미있는 사실

 

 

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그