"단진자의 주기와 타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/10821664">01 수리물리학의 주제들</a>페이지로 이동하였습니다.)
(차이 없음)

2012년 6월 10일 (일) 16:31 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 길이가 \(\ell\)인 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐
    \({d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 \)
    (여기서 g는 중력가속도)
  • 비선형 미분방정식이며, 대학수준의 역학에서는 \(\theta\)가 0에 매우 가깝다고 가정하고, \(\sin\theta\approx \theta\) 임을 이용하여 다음과 같은 미분방정식으로 대체한다
    \(d^2\theta\over dt^2}+{g\over \ell}\theta=0\)
    이 때 단진자의 주기는 \(2\pi\sqrt\frac{\ell}{g}\) 로 주어진다
  • 근사가 아닌 원래 미분방정식에 대한 진자의 주기를 구하기 위해서는, 타원적분 이 필요하다

 

 

 

단진자의 주기
  • 진폭이 \(\theta_0\)인 단진자의 주기는 다음과 같다
    \(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\phi}}\,d\phi\). 여기서 \(k=\sin\frac{\theta_0}{2}\)

(증명)

진자의 속도는 \({d\theta\over dt} = \sqrt{{2g\over \ell}\left(\cos\theta-\cos\theta_0\right)}\) 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다.

\(T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta\)

여기서 \(A=\sqrt{1-\cos\theta_0}\) 로 두고, 다음과 같은 치환을 사용하자.

\(\cos\theta-\cos\theta_0=(A\cos\phi)^2\)

그러면,

\(\cos\theta=1-A^2\sin^2\phi\)

\(\sin\theta=\sqrt{1-\cos^2\theta}=A\sin\phi\sqrt{2-A^2\sin^2\phi}\)

\(\sin\theta \,d\theta=2A^2\cos\phi\sin\phi\) 를 얻는다.

주기를 구하면,

\(T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin^2\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin^2\phi}}\,d\phi\)

\(A=\sqrt{2}k\)로 두면,

\(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\phi}}\,d\phi\)를 얻는다. ■

 

 

제1종 타원적분과의 관계

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그