대수적다양체의 제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 05:02 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 유한체 \(\mathbb{F}_q\) (\(q=p^n\)) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수


로컬 제타함수

  • \(N_r\) 이 \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면

\[Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\]

  • 소수 \(p\)의 경우 다음과 같이 쓰기도 함

\[Z_p(T):=Z(T,\mathbb{F}_p)\]

  • \(T=q^{-s}\) 로 쓰면, \(L\)-함수의 로컬인자들을 얻는다



  • 사영 직선\[N_m = q^m + 1\]

\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]

  • \(X_0^2=X_1^2+X_2^2\)\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]
  • non-singular 타원곡선 (over \(\mathbb{F}_p\))

\[Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\] 여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)



역사



메모

관련된 항목들



사전 형태의 자료


관련논문

  • Koblitz, Neal. 1982. Why Study Equations over Finite Fields? Mathematics Magazine 55, no. 3 (May 1): 144-149. doi:10.2307/2690080.
  • Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966


관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'weil'}, {'LEMMA': 'conjecture'}]
  • [{'LOWER': 'deligne'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]