"대수적 함수와 아벨적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
 
 
 
13번째 줄: 13번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">초등함수와 덧셈 정리</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">초등함수와 덧셈 정리</h5>
  
 
*  사인/아크사인함수 덧셈정리의 적분표현<br><math>\sin \left(x+y\right)=\sin x \cos y + \cos x \sin y\</math><br><math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math><br><math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
 
*  사인/아크사인함수 덧셈정리의 적분표현<br><math>\sin \left(x+y\right)=\sin x \cos y + \cos x \sin y\</math><br><math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math><br><math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
20번째 줄: 20번째 줄:
 
*  지수/로그함수 덧셈정리의 적분표현<br><math>e^x e^y= e^{x+y}</math><br><math>\ln x + \ln y= \ln xy</math><br><math>\int_{1}^{x} \frac{dx}{x}+\int_{1}^{y} \frac{dx}{x} = \int_{1}^{xy} \frac{dx}{x}</math><br>
 
*  지수/로그함수 덧셈정리의 적분표현<br><math>e^x e^y= e^{x+y}</math><br><math>\ln x + \ln y= \ln xy</math><br><math>\int_{1}^{x} \frac{dx}{x}+\int_{1}^{y} \frac{dx}{x} = \int_{1}^{xy} \frac{dx}{x}</math><br>
  
<br>
+
 
  
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">타원적분과 덧셈정리</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">타원적분과 덧셈정리</h5>
  
 
*  다음과 같은 형태의 적분을 타원적분이라 함<br>
 
*  다음과 같은 형태의 적분을 타원적분이라 함<br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">아벨-야코비 정리</h5>
+
<h5 style="line-height: 2em; margin: 0px;">아벨-야코비 정리</h5>
  
 
*  정의<br><math>H_1(C, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math>를 생성하는 2g 개의 닫힌 곡선 <math>\gamma_1, \dots, \gamma_{2g}</math><br><math>H^0(C, K) \cong \mathbb{C}^g</math>를 생성하는 g개의 holomorphic 1-form<br> 각 곡선에 대하여, <math>\Omega_j = \left(\int_{\gamma_j} \omega_1, \dots, \int_{\gamma_j} \omega_g\right) \in \mathbb{C}^g</math>는 rank가 2g인 격자를 생성<br>
 
*  정의<br><math>H_1(C, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math>를 생성하는 2g 개의 닫힌 곡선 <math>\gamma_1, \dots, \gamma_{2g}</math><br><math>H^0(C, K) \cong \mathbb{C}^g</math>를 생성하는 g개의 holomorphic 1-form<br> 각 곡선에 대하여, <math>\Omega_j = \left(\int_{\gamma_j} \omega_1, \dots, \int_{\gamma_j} \omega_g\right) \in \mathbb{C}^g</math>는 rank가 2g인 격자를 생성<br>
57번째 줄: 57번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
 
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
75번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
  
 
When I was a student, abelian functions were, as an effect of the Jacobian tradition, considered the uncontested summit of mathematics and each of us was ambitious to make progress in this field. And now? The younger generation hardly knows abelian functions.<br> How did this happen? In mathematics, as in other sciences, the same processes can be observed again and again. First, new questions arise, for internal or external reasons, and draw researchers away from the old questions. And the old questions, just because they have been worked on so much, need ever more comprehensive study for their mastery. This is unpleasant, and so one is glad to turn to problems that have been less developed and therefore require less foreknowledge - even if it is only a matter of axiomatics, or set theory, or some such thing.<br> Felix Klein (1849-1925), Development of Mathematics in the 19th Century, 1928
 
When I was a student, abelian functions were, as an effect of the Jacobian tradition, considered the uncontested summit of mathematics and each of us was ambitious to make progress in this field. And now? The younger generation hardly knows abelian functions.<br> How did this happen? In mathematics, as in other sciences, the same processes can be observed again and again. First, new questions arise, for internal or external reasons, and draw researchers away from the old questions. And the old questions, just because they have been worked on so much, need ever more comprehensive study for their mastery. This is unpleasant, and so one is glad to turn to problems that have been less developed and therefore require less foreknowledge - even if it is only a matter of axiomatics, or set theory, or some such thing.<br> Felix Klein (1849-1925), Development of Mathematics in the 19th Century, 1928
83번째 줄: 73번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
* [[periods]]<br>
 
* [[periods]]<br>
95번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
106번째 줄: 96번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
*   <br>
 
*   <br>
115번째 줄: 105번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
122번째 줄: 112번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
128번째 줄: 118번째 줄:
  
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
*  
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=classical+theory+abelian
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
 
 
 
  
 
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
 <br>
 
+
* A. Markushevich, [http://books.google.com/books?id=-kpCRuZPzTwC Introduction to the Classical Theory of Abelian Functions]
네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 4월 17일 (화) 19:43 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

초등함수와 덧셈 정리
  • 사인/아크사인함수 덧셈정리의 적분표현
    \(\sin \left(x+y\right)=\sin x \cos y + \cos x \sin y\\)
    \(\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})\)
    \(\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx \)
  • 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현
    \(\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\)
    \(\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\)
    \(\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}\)
  • 지수/로그함수 덧셈정리의 적분표현
    \(e^x e^y= e^{x+y}\)
    \(\ln x + \ln y= \ln xy\)
    \(\int_{1}^{x} \frac{dx}{x}+\int_{1}^{y} \frac{dx}{x} = \int_{1}^{xy} \frac{dx}{x}\)

 

 

타원적분과 덧셈정리
  • 다음과 같은 형태의 적분을 타원적분이라 함

\(\int R(x,y)\,dx\)

여기서 \(R(x,y)\)는 \(x,y\)의 유리함수, \(y^2\)= 중근을 갖지 않는 \(x\)의 3차식 또는 4차식.

 

  • 타원적분의 덧셈정리(오일러)
    \(p(x)=1+mx^2+nx^4\)일 때,
    \(\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\)
    여기서 \(B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\)

 

 

아벨-야코비 정리
  • 정의
    \(H_1(C, \mathbb{Z}) \cong \mathbb{Z}^{2g}\)를 생성하는 2g 개의 닫힌 곡선 \(\gamma_1, \dots, \gamma_{2g}\)
    \(H^0(C, K) \cong \mathbb{C}^g\)를 생성하는 g개의 holomorphic 1-form
    각 곡선에 대하여, \(\Omega_j = \left(\int_{\gamma_j} \omega_1, \dots, \int_{\gamma_j} \omega_g\right) \in \mathbb{C}^g\)는 rank가 2g인 격자를 생성
  • 아벨-야코비 사상
    \(u \colon C \to J(C), u(p) = \left( \int_{p_0}^p \omega_1, \dots, \int_{p_0}^p \omega_g\right) \bmod \Lambda.\)
  • u는 degree가 0인 divisor 에 대하여 정의되는 함수로 확장된다
  • u의 커널은 principal divisor로 주어지며 타원적분에 대한 덧셈정리의 일반화이며 아벨의 정리라 볼 수 있다
  • u는 전사함수이며, 이를 야코비 정리라 한다
  • 현대수학에서는 종수가 1이상인 컴팩트 리만곡면의 divisor class와 야코비안 사이에 동형사상이 있다고 표현한다

 

 

역사

 

 

메모

When I was a student, abelian functions were, as an effect of the Jacobian tradition, considered the uncontested summit of mathematics and each of us was ambitious to make progress in this field. And now? The younger generation hardly knows abelian functions.
How did this happen? In mathematics, as in other sciences, the same processes can be observed again and again. First, new questions arise, for internal or external reasons, and draw researchers away from the old questions. And the old questions, just because they have been worked on so much, need ever more comprehensive study for their mastery. This is unpleasant, and so one is glad to turn to problems that have been less developed and therefore require less foreknowledge - even if it is only a matter of axiomatics, or set theory, or some such thing.
Felix Klein (1849-1925), Development of Mathematics in the 19th Century, 1928

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서