대칭군 (symmetric group)

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

  • 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림


 

presentation[편집]

  • 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\) 여기서 \(\sigma_i=(i, i+1)\)
  • 관계식
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\) 이 조건은 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다
  • 이로부터 대칭군은 콕세터군임을 알 수 있다

\[\left\langle \sigma_1,\cdots, \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\]

[편집]

 

방정식에의 응용[편집]

 

 

관련된 항목들[편집]

메모[편집]

 

역사[편집]

 

 

매스매티카 파일 및 계산 리소스[편집]

 

수학용어번역[편집]

  • presentation - 대한수학회 수학용어집
    • 표시, 표현

 

 

사전 형태의 자료[편집]

 

리뷰, 에세이, 강의노트[편집]


관련논문[편집]