"디리클레 단위 정리와 수체의 regulator"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
40번째 줄: 40번째 줄:
 
* <math>[K : \mathbb{Q}] =6</math>, <math>r_1=0, r_2=3</math>이므로, <math>\mathfrak{O}_K^{*}</math>의 rank는 2이다<br>
 
* <math>[K : \mathbb{Q}] =6</math>, <math>r_1=0, r_2=3</math>이므로, <math>\mathfrak{O}_K^{*}</math>의 rank는 2이다<br>
 
*  fundamental units :  <math>1+\zeta _7</math>와 <math>1+\zeta _7+\zeta _7^2</math><br>
 
*  fundamental units :  <math>1+\zeta _7</math>와 <math>1+\zeta _7+\zeta _7^2</math><br>
*  regulator <math>R_{K}</math>는 2×3행렬<br><math>\left( \begin{array}{ccc}  \log \left(2 \left(1+\sin \left(\frac{3 \pi }{14}\right)\right)\right) & \log \left(2-2 \sin \left(\frac{\pi }{14}\right)\right) & \log \left(2-2 \cos \left(\frac{\pi }{7}\right)\right) \\  \log \left(3-2 \sin \left(\frac{\pi }{14}\right)+4 \sin \left(\frac{3 \pi }{14}\right)\right) & \log \left(3-4 \sin \left(\frac{\pi }{14}\right)-2 \cos \left(\frac{\pi }{7}\right)\right) & \log \left(3+2 \sin \left(\frac{3 \pi }{14}\right)-4 \cos \left(\frac{\pi }{7}\right)\right) \end{array} \right)</math><br> 의 minor를 계산하여 얻을 수 있다<br>
+
*  regulator <math>R_{K}</math>는 2×3행렬:<math>\left( \begin{array}{ccc}  \log \left(2 \left(1+\sin \left(\frac{3 \pi }{14}\right)\right)\right) & \log \left(2-2 \sin \left(\frac{\pi }{14}\right)\right) & \log \left(2-2 \cos \left(\frac{\pi }{7}\right)\right) \\  \log \left(3-2 \sin \left(\frac{\pi }{14}\right)+4 \sin \left(\frac{3 \pi }{14}\right)\right) & \log \left(3-4 \sin \left(\frac{\pi }{14}\right)-2 \cos \left(\frac{\pi }{7}\right)\right) & \log \left(3+2 \sin \left(\frac{3 \pi }{14}\right)-4 \cos \left(\frac{\pi }{7}\right)\right) \end{array} \right)</math><br> 의 minor를 계산하여 얻을 수 있다<br>
 
* <math>R_K\approx 2.10182\cdots</math><br>
 
* <math>R_K\approx 2.10182\cdots</math><br>
  
49번째 줄: 49번째 줄:
 
==higher regulator==
 
==higher regulator==
  
* [[데데킨트 제타함수]]에서 가져옴<br>  <br><math>[K : \mathbb{Q}] = r_1 + 2r_2</math><br><math>\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math><br> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 Q-basis<br> D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 함수<br>
+
* [[데데킨트 제타함수]]에서 가져옴<br>  :<math>[K : \mathbb{Q}] = r_1 + 2r_2</math>:<math>\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math><br> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 Q-basis<br> D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 함수<br>
  
 
 
 
 

2013년 1월 12일 (토) 10:29 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 수체(number field)K의 대수적정수 \(\mathfrak{O}_K\) unit의 rank 에 대한 정리
  • \([K : \mathbb{Q}] = r_1 + 2r_2\) 인 경우,  \(\mathfrak{O}_K^{*}\)의 rank는 \(r_1+r_2-1\)이다

 

 

실 이차수체의 경우

(정리) 디리클레 class number 공식
실 이차 수체(real quadratic field) \(K\)에 대하여, 다음 등식이 성립한다.

\( \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2 h_K \ln \epsilon_K}{\sqrt{d_K}}\)

\(h_K\) 는 class number, \(d_K\)는 \(K\)의 판별식(discriminant), \(\epsilon_K\)은 fundamental unit (실 이차수체(real quadratic field) 의 class number와 fundamental unit 참조)

 

 

 

원분체의 예

  • 원분체 (cyclotomic field)
  • \(K=\mathbb{Q}\left(\zeta _7\right)\)
  • \([K : \mathbb{Q}] =6\), \(r_1=0, r_2=3\)이므로, \(\mathfrak{O}_K^{*}\)의 rank는 2이다
  • fundamental units :  \(1+\zeta _7\)와 \(1+\zeta _7+\zeta _7^2\)
  • regulator \(R_{K}\)는 2×3행렬\[\left( \begin{array}{ccc} \log \left(2 \left(1+\sin \left(\frac{3 \pi }{14}\right)\right)\right) & \log \left(2-2 \sin \left(\frac{\pi }{14}\right)\right) & \log \left(2-2 \cos \left(\frac{\pi }{7}\right)\right) \\ \log \left(3-2 \sin \left(\frac{\pi }{14}\right)+4 \sin \left(\frac{3 \pi }{14}\right)\right) & \log \left(3-4 \sin \left(\frac{\pi }{14}\right)-2 \cos \left(\frac{\pi }{7}\right)\right) & \log \left(3+2 \sin \left(\frac{3 \pi }{14}\right)-4 \cos \left(\frac{\pi }{7}\right)\right) \end{array} \right)\]
    의 minor를 계산하여 얻을 수 있다
  • \(R_K\approx 2.10182\cdots\)

 

 

higher regulator

  • 데데킨트 제타함수에서 가져옴
     \[[K : \mathbb{Q}] = r_1 + 2r_2\]\[\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \sqrt{|d_{F}|}\pi^{2(r_1 + r_2)}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\]
    여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 Q-basis
    D는 Bloch-Wigner dilogarithm 함수

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 


 

 


 

 


 

 

블로그