라그랑지 resolvent

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요



정의와 주요 성질

  • \(K/F\) 는 순환체확장
  • \(\text{Gal}(K/F)\) 는 크기가 n인 갈루아 군
  • charater \(\chi : \text{Gal}(K/F) \to F\)와 \(\theta\in K\)에 대하여 라그랑지 resolvent를 다음과 같이 정의함\[R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\]
  • 중요한 성질
    • (equivariance) 임의의 \(g\in G\) 에 대하여 \(g(R)=\chi(g^{-1})R\)
    • 임의의 \(g\in G\) 에 대하여 \(g(R^n)=R^n\). 따라서 \(R^n\in F\)
  • \(\chi\) 가 character group 의 생성원인 경우,\[\theta=\frac{1}{n}\sum_{i=0}^{n-1}R(\theta,\chi^{i})\]
  • 이로부터 \(\theta\in K\) 를 F의 원소의 radical 들의 합으로 표현할 수 있음을 안다


3차 방정식의 근의 공식

  • 방정식 \(t^3+p t+q=0\) 의 해를 \(x,y,z\)라 하자
  • \(\omega \) 는 \(\omega ^2+\omega +1=0\) 를 만족시키는 primitive root of unity 이다
  • \(u\)와 \(v\)를 다음과 같이 정의하자

\[u=\left(x+\omega y+\omega ^2 z\right)^3\] \[v=\left(x+\omega ^2 y+\omega z\right)^3\]

  • \(u,v\)는 \(p,q\) 와 근호를 사용하여 표현할 수 있음을 보일 수 있다
  • 이로부터 \(x,y,z\)를, \(p,q\) 와 근호를 사용하여 표현할 수 있음을 보일 수 있다
  • 근의 공식과 라그랑지 resolvent 참조



가우스 합의 예

  • 가우스 합
  • \(a\in (\mathbb Z/f \mathbb Z)^{*}\)와 준동형사상 \(\chi \colon (\mathbb Z/f\mathbb Z)^{*} \to \mathbb C^{*}\)에 대하여 가우스합을 다음과 같이 정의함

\[g_a(\chi) := \sum_{(t,f)=1} \chi(t) e^{2 \pi i a t/f}=\sum_{(t,f)=1} \chi(t) \zeta^{a t}\] 여기서 \( \zeta = e^{2\pi i/f}\)

  • 다음과 같은 성질을 가진다

\[g_a(\chi) = \chi(a^{-1}) g_1(\chi)=\bar\chi(a)g_1(\chi)\]


순환 체확장에서의 응용

\(F\)가 primitive n-th root of unity \(\zeta_n\)를 포함하는 체

\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.

\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.

\(K\)에 정의된 \(F\)-선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여 0이 아님을 알 수 있고, 따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다.

\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\) 로 정의되는 수가 중요한 역할을 한다.

\(\sigma(a)=\zeta_n^{-1}a\) 임을 다음과 같이 보일 수 있다.

\[\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\]





메모


관련된 항목들



수학용어번역



매스매티카 파일 및 계산 리소스


리뷰논문, 에세이, 강의노트