로그 적분(logarithmic integral)

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 06:37 판 (→‎메타데이터: 새 문단)
둘러보기로 가기 검색하러 가기

개요

  • 적분으로 정의되는 함수\[\operatorname{Li}(x)=\int_2^{x} \frac{1}{\log x}\,dx\]



로그적분의 초등함수 표현

  • 다음 리우빌의 정리를 이용하여, 불가능성을 증명할 수 있다 (부정적분의 초등함수 표현(Integration in finite terms) 참조) (정리 ) 리우빌, 1835\[f(x), g(x)\] 는 유리함수이면, (단, \(g(x)\) 는 상수함수가 아님) 다음 두 명제는 동치이다. (i)\(\int f(x)e^{g(x)} \,dx\) 는 초등함수이다. (ii) 유리함수 \(R(x)\)가 존재하여 \(f(x)=R'(x)+R(x)g'(x)\) 를 만족시킨다.
  • 로그적분에의 적용 (증명)\[\int \frac{1}{\log x} dx=\int \frac{e^{t}}{t}dt\], \(t=\log x\) 리우빌의 정리에 의하여, 미분방정식 \(\frac{1}{z}=R'(z)+R(z)\)를 만족시키는 유리함수 \(R(x)\)가 존재하지 않음을 보이면 된다. 먼저 유리함수 \(R(x)\)는 다항식이 될 수 없으므로, 두 다항식 \(p(x), q(x)\) (\(q(x)\)는 상수가 아님) 에 대하여, 기약형식 \(R(x)=\frac{p(x)}{q(x)}\) 로 쓸 수 있다. \[q(z)\]가 \(z=z_0\)에서 복소해를 갖는다고 하고, \({\mu}\geq 1\)를 그 multiplicity로 두자. \(z=z_0\) 근방에서 \(R(z)\sim (z-z_0)^{-\mu}\), \(R'(z)\sim (z-z_0)^{-\mu-1}\) 이다.\[z=z_0\] 근방에서 \(R'(z)+R(z)\sim (z-z_0)^{-\mu-1}\)이고, \(\frac{1}{z}\) 는 0근방에서만 크기가 1인 특이점을 가지므로, \[\frac{1}{z}=R'(z)+R(z)\]에 모순이다. ■



메모

관련된 항목들



수학용어번역



사전 형태의 자료

메타데이터

위키데이터