로그 적분(logarithmic integral)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 적분으로 정의되는 함수\[\operatorname{Li}(x)=\int_2^{x} \frac{1}{\log x}\,dx\]



로그적분의 초등함수 표현

  • 다음 리우빌의 정리를 이용하여, 불가능성을 증명할 수 있다 (부정적분의 초등함수 표현(Integration in finite terms) 참조) (정리 ) 리우빌, 1835\[f(x), g(x)\] 는 유리함수이면, (단, \(g(x)\) 는 상수함수가 아님) 다음 두 명제는 동치이다. (i)\(\int f(x)e^{g(x)} \,dx\) 는 초등함수이다. (ii) 유리함수 \(R(x)\)가 존재하여 \(f(x)=R'(x)+R(x)g'(x)\) 를 만족시킨다.
  • 로그적분에의 적용 (증명)\[\int \frac{1}{\log x} dx=\int \frac{e^{t}}{t}dt\], \(t=\log x\) 리우빌의 정리에 의하여, 미분방정식 \(\frac{1}{z}=R'(z)+R(z)\)를 만족시키는 유리함수 \(R(x)\)가 존재하지 않음을 보이면 된다. 먼저 유리함수 \(R(x)\)는 다항식이 될 수 없으므로, 두 다항식 \(p(x), q(x)\) (\(q(x)\)는 상수가 아님) 에 대하여, 기약형식 \(R(x)=\frac{p(x)}{q(x)}\) 로 쓸 수 있다. \[q(z)\]가 \(z=z_0\)에서 복소해를 갖는다고 하고, \({\mu}\geq 1\)를 그 multiplicity로 두자. \(z=z_0\) 근방에서 \(R(z)\sim (z-z_0)^{-\mu}\), \(R'(z)\sim (z-z_0)^{-\mu-1}\) 이다.\[z=z_0\] 근방에서 \(R'(z)+R(z)\sim (z-z_0)^{-\mu-1}\)이고, \(\frac{1}{z}\) 는 0근방에서만 크기가 1인 특이점을 가지므로, \[\frac{1}{z}=R'(z)+R(z)\]에 모순이다. ■



메모

관련된 항목들



수학용어번역



사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'logarithmic'}, {'LOWER': 'integral'}, {'LEMMA': 'function'}]