"로저스 다이로그 함수 (Rogers dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
  
* <math>x\in (0,1)</math>에서 로저스 dilogarithm을 다음과 같이 정의<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math> <br>
+
* <math>x\in (0,1)</math>에서 로저스 dilogarithm을 다음과 같이 정의<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br>
 
* <math>(-\infty,0],[1,\+\infty)</math>를 제외한 복소평면으로 해석적확장됨<br>
 
* <math>(-\infty,0],[1,\+\infty)</math>를 제외한 복소평면으로 해석적확장됨<br>
  
26번째 줄: 26번째 줄:
 
<math>L(1)=\frac{\pi^2}{6}</math>
 
<math>L(1)=\frac{\pi^2}{6}</math>
  
 
+
<math>L_{2}(-1)=-\frac{\pi^2}{12}</math><math>L(-1)=-\frac{\pi^2}{12}</math>
 +
 
 +
<math>\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)</math>
 +
 
 +
<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})</math>
 +
 
 +
<math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})</math>
 +
 
 +
<math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
 +
 
 +
<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
  
 
 
 
 
115번째 줄: 125번째 줄:
 
** Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
 
** Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
 
* [http://dx.doi.org/10.1007/BF01840426 Identities for the Rogers dilogarithm function connected with simple Lie algebras]<br>
 
* [http://dx.doi.org/10.1007/BF01840426 Identities for the Rogers dilogarithm function connected with simple Lie algebras]<br>
** A. N. Kirillov
+
** A. N. Kirillov, 1989
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/10.1023/A:1009709927327
 
* http://dx.doi.org/10.1023/A:1009709927327

2010년 2월 9일 (화) 13:23 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의
  • \(x\in (0,1)\)에서 로저스 dilogarithm을 다음과 같이 정의
    \(L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\)
  • \((-\infty,0],[1,\+\infty)\)를 제외한 복소평면으로 해석적확장됨

 

 

special values

\(L(0)=0\)

\(L(1)=\frac{\pi^2}{6}\)

\(L_{2}(-1)=-\frac{\pi^2}{12}\)\(L(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

 

반사공식(오일러)

\(L(x)+L(1-x)=L(1)\)

 

 

5항 관계식

\(L(x)+L(y)=L(xy)+L(\frac{x(1-y)}{1-xy})+L\Left( \frac{y(1-x)}{1-xy} )\right)\)

 

 

곤차로프(Goncharov)의 추측

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그