"리대수 지표의 행렬식 표현"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
* 여기서 분모는 [[반데몬드 행렬과 행렬식 (Vandermonde matrix)]]에서 등장하는 반데몬드 다항식이다
 
* 여기서 분모는 [[반데몬드 행렬과 행렬식 (Vandermonde matrix)]]에서 등장하는 반데몬드 다항식이다
 
:<math>\Delta(x):=\det_{1\le i,j\le n}(x_{i}^{n-j})=\prod_{1\le i<j\le n} (x_i-x_j)</math>
 
:<math>\Delta(x):=\det_{1\le i,j\le n}(x_{i}^{n-j})=\prod_{1\le i<j\le n} (x_i-x_j)</math>
* 단순리대수 $B_n$$C_n$의 지표는 다음과 같은 행렬식으로 주어짐
+
* 슈르 다항식은 $gl_n(\mathbb{C})$의 표현의 지표 [[일반 선형군의 표현론]]
 +
* 다른 고전 리대수에 대해서도 성립
 +
 
 +
 
 +
==일반화==
 +
===$B_n$===
 +
* <math>\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0</math>, $\lambda_i$는 모두 정수 또는 정수+1/2 꼴
 
$$
 
$$
\begin{align}
+
\operatorname{so}_{2n+1,\lambda}(x)=\frac{\det_{1\leq i,j\leq n}
\operatorname{so}_{2n+1,\lambda}(x)&=\frac{\det_{1\leq i,j\leq n}  
+
\big(x_i^{\lambda_j+n-j+1/2}-x_i^{-(\lambda_j+n-j+1/2)}\big)}{\det_{1\leq i,j\leq n}
 +
\big(x_i^{n-j+1/2}-x_i^{-(n-j+1/2)}\big)}=\frac{\det_{1\leq i,j\leq n}  
 
\big(x_i^{j-1-\lambda_j}-x_i^{2n-j+\lambda_j}\big)}
 
\big(x_i^{j-1-\lambda_j}-x_i^{2n-j+\lambda_j}\big)}
{\Delta_{\mathrm{B}}(x)}, \\
+
{\Delta_{\mathrm{B}}(x)}
\operatorname{symp}_{2n,\lambda}(x)&=\frac{\det_{1\leq i,j\leq n}  
+
$$
 +
여기서
 +
$$
 +
\Delta_{\mathrm{B}}(x)=\prod_{i=1}^n (1-x_i)
 +
\prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1)
 +
$$
 +
 
 +
 
 +
===$C_n$===
 +
* <math>\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0</math>, $\lambda_i$는 모두 정수
 +
$$
 +
\operatorname{symp}_{2n,\lambda}(x)=\frac{\det_{1\leq i,j\leq n}
 +
\big(x_i^{\lambda_j+n-j+1}-x_i^{-(\lambda_j+n-j+1)}\big)}{\det_{1\leq i,j\leq n}
 +
\big(x_i^{n-j+1}-x_i^{-(n-j+1)}\big)}
 +
=\frac{\det_{1\leq i,j\leq n}
 +
\big(x_i^{j-1-\lambda_j}-x_i^{2n-j+1+\lambda_j}\big)}{\det_{1\leq i,j\leq n}  
 
\big(x_i^{j-1-\lambda_j}-x_i^{2n-j+1+\lambda_j}\big)}
 
\big(x_i^{j-1-\lambda_j}-x_i^{2n-j+1+\lambda_j}\big)}
{\Delta_{\mathrm{C}}(x)}.
 
\end{align}
 
 
$$
 
$$
여기서 $\Delta_{\mathrm{B}}$ 와 $\Delta_{\mathrm{C}}$ 일반화된 반데몬드 행렬식
+
여기서
 
$$
 
$$
\begin{align*}
+
\Delta_{\mathrm{C}}(x)=\prod_{i=1}^n (1-x_i^2)
\Delta_{\mathrm{B}}(x)&:=\prod_{i=1}^n (1-x_i)
 
\prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1) \\
 
\Delta_{\mathrm{C}}(x)&:=\prod_{i=1}^n (1-x_i^2)
 
 
\prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1).
 
\prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1).
\end{align*}
 
 
$$
 
$$
  

2015년 9월 10일 (목) 23:09 판

개요

  • 자연수 $n$을 고정
  • 분할 \(\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\)
  • 슈르 다항식(Schur polynomial)은 다음과 같이 행렬식을 이용하여 정의된다

\[s_{\lambda} = \frac{\det_{1\le i,j\le n}(x_{i}^{\lambda_{j}+n-j})}{\Delta(x)} \label{van}\]

\[\Delta(x):=\det_{1\le i,j\le n}(x_{i}^{n-j})=\prod_{1\le i<j\le n} (x_i-x_j)\]


일반화

$B_n$

  • \(\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\), $\lambda_i$는 모두 정수 또는 정수+1/2 꼴

$$ \operatorname{so}_{2n+1,\lambda}(x)=\frac{\det_{1\leq i,j\leq n} \big(x_i^{\lambda_j+n-j+1/2}-x_i^{-(\lambda_j+n-j+1/2)}\big)}{\det_{1\leq i,j\leq n} \big(x_i^{n-j+1/2}-x_i^{-(n-j+1/2)}\big)}=\frac{\det_{1\leq i,j\leq n} \big(x_i^{j-1-\lambda_j}-x_i^{2n-j+\lambda_j}\big)} {\Delta_{\mathrm{B}}(x)} $$ 여기서 $$ \Delta_{\mathrm{B}}(x)=\prod_{i=1}^n (1-x_i) \prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1) $$


$C_n$

  • \(\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\), $\lambda_i$는 모두 정수

$$ \operatorname{symp}_{2n,\lambda}(x)=\frac{\det_{1\leq i,j\leq n} \big(x_i^{\lambda_j+n-j+1}-x_i^{-(\lambda_j+n-j+1)}\big)}{\det_{1\leq i,j\leq n} \big(x_i^{n-j+1}-x_i^{-(n-j+1)}\big)} =\frac{\det_{1\leq i,j\leq n} \big(x_i^{j-1-\lambda_j}-x_i^{2n-j+1+\lambda_j}\big)}{\det_{1\leq i,j\leq n} \big(x_i^{j-1-\lambda_j}-x_i^{2n-j+1+\lambda_j}\big)} $$ 여기서 $$ \Delta_{\mathrm{C}}(x)=\prod_{i=1}^n (1-x_i^2) \prod_{1\leq i<j\leq n} (x_i-x_j)(x_ix_j-1). $$


리틀우드 항등식

  • $m,n\in \mathbb{Z}_{\geq 0}$, $n\geq 1$
  • typc B (Macdonald)

$$ (x_1\cdots x_n)^{m/2} \operatorname{so}_{2n+1,(\frac{m}{2})^n}(x)=\sum_{\substack{\lambda \\[1.5pt] \lambda_1\leq m}} s_{\lambda}(x) $$

  • type C (Désarménien-Proctor-Stembridge)

$$ (x_1\cdots x_n)^m \operatorname{symp}_{2n,(m^n)}(x)=\sum_{\substack{\lambda \text{ even} \\[1.5pt] \lambda_1\leq 2m}} s_{\lambda}(x) $$

메모

  • Krattenthaler, C. “Identities for Classical Group Characters of Nearly Rectangular Shape.” Journal of Algebra 209, no. 1 (1998): 1–64. doi:10.1006/jabr.1998.7531. http://arxiv.org/abs/math/9808118
  • Okada, Soichi. “Applications of Minor Summation Formulas to Rectangular-Shaped Representations of Classical Groups.” Journal of Algebra 205, no. 2 (1998): 337–67. doi:10.1006/jabr.1997.7408.

관련된 항목들


매스매티카 파일 및 계산 리소스


관련도서


관련논문

  • Fulmek, Markus, and Christian Krattenthaler. “Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters.” Journal of Combinatorial Theory. Series A 77, no. 1 (1997): 3–50. doi:10.1006/jcta.1996.2711.
  • Hamel, A. M. “Determinantal Forms for Symplectic and Orthogonal Schur Functions.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 49, no. 2 (1997): 263–82. doi:10.4153/CJM-1997-013-5.