리대수 sl(3,C)의 유한차원 표현론

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 복소수체 위의 8차원 리대수 \(\mathfrak{g}=\mathfrak{sl}(3,\mathbb{C})\)
  • \(\mathfrak{g}=\{X\in \mathfrak{gl}(3,\mathbb{C})|\operatorname{Tr}(X)=0 \}\)
  • \(A_2\) 타입의 단순 리대수


리대수 \(\mathfrak{sl}(3,\mathbb{C})\)

  • 기저

\[ \begin{array}{|rcl|} \hline h_1 & = & \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \\ \hline h_2 & = & \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ \end{array} \right) \\ \hline e_1 & = & \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \\ \hline e_2 & = & \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{array} \right) \\ \hline e_3 & = & \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \\ \hline f_1 & = & \left( \begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \\ \hline f_2 & = & \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} \right) \\ \hline f_3 & = & \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array} \right) \\ \hline \end{array} \]

\[A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\]

  • \(A_2\) 루트 시스템

\[\Phi=\{\alpha_1,\alpha_2,\alpha_1+\alpha_2,-\alpha_1,-\alpha_2,-\alpha_1-\alpha_2\}\]

  • 바일군

\[ \{s(),s(1),s(2),s(1,2),s(2,1),s(1,2,1)\} \]

  • \(A_2\)의 루트 시스템을 \(\mathbb{R}^3\)안에서 다음과 같이 얻을 수 있다
    • \(\alpha_1=(1,-1,0)\)
    • \(\alpha_2=(0,1,-1)\)
    • \(\alpha_3=\alpha_1+\alpha_2=(1,0,-1)\)
  • fundamental weights
    • \(\omega_1=(\frac{2}{3},-\frac{1}{3},-\frac{1}{3})\)
    • \(\omega_2=(\frac{1}{3},\frac{1}{3},-\frac{2}{3})\)
  • 바일 벡터 \(\rho=(1,0,-1)\)


유한차원 기약 표현의 분류

  • 유한차원 기약 표현 \(V\)에 대하여, 적당한 dominant weight \(\omega=a\omega_1+b\omega_2,\quad a,b\in \mathbb{Z}_{\geq 0}\)가 존재하여, \(V\cong L(\omega)\)가 성립
  • 바일 차원 공식(Weyl dimension formula)을 이용하면, 다음을 얻는다

\[ \dim L(a\omega_1+b\omega_2)=\frac{1}{2} (a+1) (b+1) (a+b+2) \]


기약표현의 예

  • 아래의 그림에서 빨간색 원은 highest weight, 숫자는 각 weight 공간의 차원을 의미
  • 표현 \(V=L(\lambda)\)의 지표를 다음과 같이 정의

\[ \chi_{\lambda}=\sum_{\lambda' \in P} (\dim{V_{\lambda'}})e^{\lambda'} \]


예1

  • fundamental 표현, highest weight은 \(\omega_1\)
  • 3차원 표현
  • 지표

\[ \chi_{\omega_1}=x_1+\frac{1}{x_2}+\frac{x_2}{x_1} \]

  • weight diagram

리대수 sl(3,C)의 유한차원 표현론1.png


예2

  • adjoint 표현, highest weight은 \(\omega_1+\omega_2\)
  • 8차원 표현
  • 지표

\[ \chi_{\omega_1+\omega_2}=\frac{x_1^2}{x_2}+x_2 x_1+\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}+\frac{1}{x_1 x_2}+\frac{x_2^2}{x_1}+2 \]

  • weight diagram

리대수 sl(3,C)의 유한차원 표현론2.png


예3

  • highest weight이 \(3\omega_1+2\omega_2\)로 주어진 기약표현
  • 42차원 표현
  • 지표

\[ \begin{align} \chi_{3\omega_1+2\omega_2}&= \frac{x_1^5}{x_2^2}+\frac{x_1^4}{x_2^3}+x_1^4+x_2^2 x_1^3+\frac{2 x_1^3}{x_2}+\frac{x_1^3}{x_2^4}+2 x_2 x_1^2+\frac{2 x_1^2}{x_2^2}+\frac{x_1^2}{x_2^5}+x_2^3 x_1\\ &+\frac{2 x_1}{x_2^3}+3 x_1+\frac{x_2^5}{x_1^3}+\frac{x_2^4}{x_1^4}+\frac{2 x_2^3}{x_1^2}+\frac{x_2^3}{x_1^5}+\frac{2 x_2^2}{x_1^3}+2 x_2^2+\frac{x_2}{x_1^4}+\frac{2}{x_1^2}+\frac{3}{x_2}\\ &+\frac{1}{x_1^3 x_2}+\frac{2}{x_1 x_2^2}+\frac{1}{x_1^2 x_2^3}+\frac{1}{x_2^4}+\frac{x_2^4}{x_1}+\frac{3 x_2}{x_1} \end{align} \]

  • weight diagram

리대수 sl(3,C)의 유한차원 표현론3.png


관련된 항목들


매스매티카 파일 및 계산 리소스