"리만 가설"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 11개는 보이지 않습니다)
42번째 줄: 42번째 줄:
  
 
*  Rubinstein-Sarnak 1994
 
*  Rubinstein-Sarnak 1994
** how often $\pi(x)>\operatorname{Li}(x)$
+
** how often <math>\pi(x)>\operatorname{Li}(x)</math>
 
*  even(x) : number of natural numbers , even number of prime factors
 
*  even(x) : number of natural numbers , even number of prime factors
 
*  Odd(x) : odd number of prime factors
 
*  Odd(x) : odd number of prime factors
68번째 줄: 68번째 줄:
 
   
 
   
  
==Hilbert-Polya==
+
==Hilbert-Polya and random matrices==
  
 
* http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture
 
* http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture
 
* http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble
 
* http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble
* [http://arxiv.org/abs/math-ph/0412017 Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond] Authors: Yan V. Fyodorov
+
* Forrester, Peter J., and Anthony Mays. “Finite Size Corrections in Random Matrix Theory and Odlyzko’s Data Set for the Riemann Zeros.” arXiv:1506.06531 [math-Ph], June 22, 2015. http://arxiv.org/abs/1506.06531.
 +
* Barrett, Owen, Frank W. K. Firk, Steven J. Miller, and Caroline Turnage-Butterbaugh. ‘From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond’. arXiv:1505.07481 [math], 27 May 2015. http://arxiv.org/abs/1505.07481.
 +
* Fyodorov, Yan V. “Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond.” arXiv:math-ph/0412017, December 7, 2004. http://arxiv.org/abs/math-ph/0412017.
 +
*  J.P. Keating (1993), Quantum chaology and the Riemann zeta-function, in Quantum Chaos, eds. G. Casati, I. Guarneri & U. Smilansky, (North-Holland, Amsterdam), 145-185 http://www.maths.bris.ac.uk/~majpk/papers/13.pdf
 +
* Berry, M. V. “The Bakerian Lecture, 1987: Quantum Chaology.” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 413, no. 1844 (September 8, 1987): 183–98. doi:10.1098/rspa.1987.0109.
 
* Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,
 
* Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,
 
+
* Paul Bourgade, Marc Yor. [http://hal.archives-ouvertes.fr/hal-00119410/en/ Random Matrices and the Riemann zeta function], 2006
+
* http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm
 
+
* http://www.maths.bris.ac.uk/~majpk/publications.html
 
  
 
==Noncommutatative geometry==
 
==Noncommutatative geometry==
83번째 줄: 86번째 줄:
 
* Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
 
* Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
 
* [http://gigapedia.com/items:description?id=90484 Noncommutative Geometry and Number Theory]: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)
 
* [http://gigapedia.com/items:description?id=90484 Noncommutative Geometry and Number Theory]: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)
 
 
 
 
 
==Random matrices==
 
 
* http://hal.archives-ouvertes.fr/hal-00119410/en/
 
* http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm
 
* Random Matrices and the Riemann zeta function
 
 
 
  
 
   
 
   
108번째 줄: 99번째 줄:
 
   
 
   
  
==재미있는 사실==
+
==메모==
 
+
* Feng, Nianrong, Yongzheng Wang, and Ruixin Wu. “To Reveal the Truth of the Zeta Function in Riemann’s Manuscript.” arXiv:1508.02932 [math], August 6, 2015. http://arxiv.org/abs/1508.02932.
 
* 영화속 오류 russell crowe riemann zeta
 
* 영화속 오류 russell crowe riemann zeta
 
* http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
 
* http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
 
 
 
 
  
 
==역사==
 
==역사==
127번째 줄: 114번째 줄:
 
==관련된 항목들==
 
==관련된 항목들==
 
* [[소수정리]]
 
* [[소수정리]]
 +
* [[리만제타함수의 영점]]
 
* [[클레이 연구소 밀레니엄 문제들]]
 
* [[클레이 연구소 밀레니엄 문제들]]
 
   
 
   
142번째 줄: 130번째 줄:
  
 
==리뷰, 에세이, 강의노트==
 
==리뷰, 에세이, 강의노트==
 +
* Alain, Connes. “An Essay on the Riemann Hypothesis.” arXiv:1509.05576 [math], September 18, 2015. http://arxiv.org/abs/1509.05576.
 
* Wolf, Marek. “Will a Physicists Prove the Riemann Hypothesis?” arXiv:1410.1214 [math-Ph], October 5, 2014. http://arxiv.org/abs/1410.1214.
 
* Wolf, Marek. “Will a Physicists Prove the Riemann Hypothesis?” arXiv:1410.1214 [math-Ph], October 5, 2014. http://arxiv.org/abs/1410.1214.
 
* França, Guilherme, and André LeClair. 2014. “A Theory for the Zeros of Riemann Zeta and Other L-Functions.” arXiv:1407.4358 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/1407.4358.
 
* França, Guilherme, and André LeClair. 2014. “A Theory for the Zeros of Riemann Zeta and Other L-Functions.” arXiv:1407.4358 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/1407.4358.
149번째 줄: 138번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Brian Conrey, Jonathan P. Keating, Moments of zeta and correlations of divisor-sums: IV, http://arxiv.org/abs/1603.06893v1
 
* [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859
 
* [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859
  
 
[[분류:리만 제타 함수]]
 
[[분류:리만 제타 함수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2993323 Q2993323]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hilbert'}, {'OP': '*'}, {'LOWER': 'pólya'}, {'LEMMA': 'conjecture'}]

2021년 2월 17일 (수) 05:41 기준 최신판

개요

  • 리만제타함수의 함수방정식은 다음과 같음\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
  • 자명한 해는 \(s=-2,-4,-6\cdots\)
  • 리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 \(1/2\) 이라는 추측



소수정리

  • 리만 제타 함수와 소수 계량 함수의 관계
  • "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
  • 소수정리



비자명해의 수론적 특성

  • 추측
    • The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)



일반화된 리만가설




응용

  • Rubinstein-Sarnak 1994
    • how often \(\pi(x)>\operatorname{Li}(x)\)
  • even(x) : number of natural numbers , even number of prime factors
  • Odd(x) : odd number of prime factors
  • 골드바흐 추측
  • 1923 하디-리틀우드
  • 1937비노그라도프
  • 1997 Deshouillers-Effinger-te Riele-Zinoviev
  • 순환소수에 대한 아틴의 추측

\[C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\]



Spectal theory and RH



Hilbert-Polya and random matrices

Noncommutatative geometry

  • Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
  • Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)


Computation of non-trivial zeros


메모

역사



관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hilbert'}, {'OP': '*'}, {'LOWER': 'pólya'}, {'LEMMA': 'conjecture'}]