리만 곡면의 주기 행렬과 겹선형 관계 (bilinear relation)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 종수가 \(g\)인 컴팩트 리만 곡면 \(X\)의 주기 행렬은 지겔 상반 공간 \(\mathcal{H}_g\)의 원소로 주어짐

\[ \mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} \]


주기 행렬

  • 다음을 만족하는 \(H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}\)의 기저, 2g 개의 닫힌 곡선 \(a_1, \dots, a_g,b_1,\cdots,b_g\)이 존재 (canonical homology basis)

\[ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} \]

  • 즉, 다음과 같은 intersection form을 가진다

\[ \begin{array}{c|cc} \text{} & a& b \\ \hline a & 0 & I_g \\ b & -I_g & 0 \end{array} \]

  • 다음을 만족하는 \(H^0(X, K) \cong \mathbb{C}^g\)의 기저, holomorphic 1-form \(\omega_1,\cdots,\omega_{g}\)가 존재

\[ \int_{a_i}\omega_j=\delta_{ij} \]

  • \(\tau_{i,j}=\int_{b_i}\omega_j\)로 두면, \(\tau=(\tau_{i,j})_{1\leq i,j\leq g}\)는 다음의 성질을 만족한다 (리만 겹선형 관계)
  1. \(\tau^{\mathrm{T}}=\tau\)
  2. \(\textrm{Im}(\tau)\)는 양의 정부호 행렬(positive definite matrix)
  • 즉, \(\tau\)는 지겔 상반 공간 \(\mathcal{H}_g\)의 원소이며, \(X\)의 주기 행렬 (period matrix)라 부른다

\(g=3\) 인 경우

\[ \begin{array}{c|ccc|ccc} \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ \hline \omega _1 & \left\langle a_1|\omega _1\right\rangle & \left\langle a_2|\omega _1\right\rangle & \left\langle a_3|\omega _1\right\rangle & \left\langle b_1|\omega _1\right\rangle & \left\langle b_2|\omega _1\right\rangle & \left\langle b_3|\omega _1\right\rangle \\ \omega _2 & \left\langle a_1|\omega _2\right\rangle & \left\langle a_2|\omega _2\right\rangle & \left\langle a_3|\omega _2\right\rangle & \left\langle b_1|\omega _2\right\rangle & \left\langle b_2|\omega _2\right\rangle & \left\langle b_3|\omega _2\right\rangle \\ \omega _3 & \left\langle a_1|\omega _3\right\rangle & \left\langle a_2|\omega _3\right\rangle & \left\langle a_3|\omega _3\right\rangle & \left\langle b_1|\omega _3\right\rangle & \left\langle b_2|\omega _3\right\rangle & \left\langle b_3|\omega _3\right\rangle \end{array} = \begin{array}{c|ccc|ccc} \text{} & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \\ \hline \omega _1 & 1 & 0 & 0 & \tau _{1,1} & \tau _{1,2} & \tau _{1,3} \\ \omega _2 & 0 & 1 & 0 & \tau _{2,1} & \tau _{2,2} & \tau _{2,3} \\ \omega _3 & 0 & 0 & 1 & \tau _{3,1} & \tau _{3,2} & \tau _{3,3} \end{array} \] 여기서 \(\left\langle \gamma|\omega\right\rangle=\int_{\gamma}\omega\)


\[ \frac{1}{2} \left( \begin{array}{ccc} \rho & 1 & 1 \\ 1 & \rho & 1 \\ 1 & 1 & \rho \\ \end{array} \right) \] 여기서 \(\rho=\frac{-1+\sqrt{-7}}{2}\).


메모


관련된 항목들


매스매티카 파일 및 계산 리소스


리뷰논문, 에세이, 강의노트


관련논문

  • Braden, Harry W., and Timothy P. Northover. 2012. “Bring’s Curve: Its Period Matrix and the Vector of Riemann Constants”. ArXiv e-print 1206.6004. http://arxiv.org/abs/1206.6004.
  • Deconinck, Bernard, and Mark van Hoeij. 2001. “Computing Riemann Matrices of Algebraic Curves.” Physica D. Nonlinear Phenomena 152/153: 28–46. doi:10.1016/S0167-2789(01)00156-7.
  • Tretkoff, C. L., and M. D. Tretkoff. 1984. “Combinatorial Group Theory, Riemann Surfaces and Differential Equations.” In Contributions to Group Theory, 33:467–519. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=767125.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'riemann'}, {'LEMMA': 'form'}]