"리만 세타 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[세타함수론|세타함수 이론]]<br>
 
* [[세타함수론|세타함수 이론]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
[[오일러의 오각수정리(pentagonal number theorem)]]
 
[[오일러의 오각수정리(pentagonal number theorem)]]
27번째 줄: 27번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
+
==역사==
  
 
*  자코비 fundamenta nova<br>
 
*  자코비 fundamenta nova<br>
39번째 줄: 39번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
+
==메모==
  
 
* [http://swc.math.arizona.edu/aws/09/ Arizona Winter School 2009: Quadratic Forms]<br>
 
* [http://swc.math.arizona.edu/aws/09/ Arizona Winter School 2009: Quadratic Forms]<br>
53번째 줄: 53번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
* [[모듈라 형식(modular forms)]]<br>
 
* [[모듈라 형식(modular forms)]]<br>
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br>
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br>
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>

2012년 11월 1일 (목) 14:27 판

이 항목의 스프링노트 원문주소

 

 

개요

오일러의 오각수정리(pentagonal number theorem)

\(\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\)

\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)

 

의 양변에 \(q^{1/24}\)를 곱하여, 데데킨트 에타함수의 세타함수 표현을 얻는다

\(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}\)

 

 

 

역사

 

 

메모

 

 

관련된 항목들