"무리수와 초월수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
 
<h5>겔퐁드-슈나이더 정리</h5>
 
<h5>겔퐁드-슈나이더 정리</h5>
  
If <math>\alpha</math> and <math>\beta</math> are algebraic numbers (with <math>\alpha \ne 0</math> and <math>\log \alpha</math> any non-zero logarithm of <math>\alpha</math>), and if <math>\beta</math> is not a rational number, then any value of <math>\alpha^{\beta} =\exp\{\beta \log \alpha\}</math>is a transcendental number.
+
If <math>\alpha</math> and <math>\beta</math> are [http://en.wikipedia.org/wiki/Algebraic_number algebraic number]s (with <math>\alpha \ne 0</math> and <math>\log \alpha</math> any non-zero logarithm of <math>\alpha</math>), and if <math>\beta</math> is not a [http://en.wikipedia.org/wiki/Rational_number rational number], then any value of <math>\alpha^{\beta} =\exp\{\beta \log \alpha\}</math>is a [http://en.wikipedia.org/wiki/Transcendental_number transcendental number].
  
 
'''Comments'''
 
'''Comments'''
  
* The values of<math>\alpha</math> and <math>\beta</math>are not restricted to real numbers; all complex numbers are allowed.
+
* The values of<math>\alpha</math> and <math>\beta</math>are not restricted to [http://en.wikipedia.org/wiki/Real_number real numbers]; all [http://en.wikipedia.org/wiki/Complex_number complex numbers] are allowed.
* In general, <math><math>\alpha^{\beta} = \exp\{\beta \log \alpha\}</math> is [[multivalued function|multivalued]], where "log" stands for the [[complex logarithm]]. This accounts for the phrase "any value of" in the theorem's statement. * An equivalent formulation of the theorem is the following: if <math>\alpha</math> and <math>\gamma</math> are nonzero algebraic numbers, and we take any non-zero logarithm of α, then <math>(\log \gamma)/(\log \alpha)</math> is either rational or transcendental. * If the restriction that <math>\beta</math> be algebraic is removed, the statement does not remain true in general (choose <math>\alpha=3</math> and <math>\beta=\log 2/\log 3</math>, which is transcendental, then <math>\alpha^{\beta}=2</math> is algebraic). A characterization of the values for α and β which yield a transcendental α<sup>β</sup> is not known.
+
* In general, <math>\alpha^{\beta} = \exp\{\beta \log \alpha\}</math> is [http://en.wikipedia.org/wiki/Multivalued_function multivalued], where "log" stands for the [http://en.wikipedia.org/wiki/Complex_logarithm complex logarithm]. This accounts for the phrase "any value of" in the theorem's statement.
 +
* An equivalent formulation of the theorem is the following: if<math>\alpha</math>and <math>\gamma</math> are nonzero algebraic numbers, and we take any non-zero logarithm of<math>\alpha</math>, then<math>(\log \gamma)/(\log \alpha)</math>is either rational or transcendental.
 +
* If the restriction that<math>\beta</math>be algebraic is removed, the statement does not remain true in general (choose <math>\alpha=3</math> and <math>\beta=\log 2/\log 3</math>, which is transcendental, then <math>\alpha^{\beta}=2</math> is algebraic). A characterization of the values for α and β which yield a transcendental α<sup>β</sup> is not known.
  
 
 
 
 

2009년 6월 25일 (목) 19:28 판

간단한 소개
  • 복소수 중에서 어떠한 유리수 계수방정식도 만족시킬 수 없는 수를 초월수라 함
    • 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
      \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)
    • 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
  • 대수적수론 에 비해 훨씬 어렵고, 체계적인 이론이 확립되어 있지 않음.

 

 

린데만-바이어슈트라스 정리

 

겔퐁드-슈나이더 정리

If \(\alpha\) and \(\beta\) are algebraic numbers (with \(\alpha \ne 0\) and \(\log \alpha\) any non-zero logarithm of \(\alpha\)), and if \(\beta\) is not a rational number, then any value of \(\alpha^{\beta} =\exp\{\beta \log \alpha\}\)is a transcendental number.

Comments

  • The values of\(\alpha\) and \(\beta\)are not restricted to real numbers; all complex numbers are allowed.
  • In general, \(\alpha^{\beta} = \exp\{\beta \log \alpha\}\) is multivalued, where "log" stands for the complex logarithm. This accounts for the phrase "any value of" in the theorem's statement.
  • An equivalent formulation of the theorem is the following: if\(\alpha\)and \(\gamma\) are nonzero algebraic numbers, and we take any non-zero logarithm of\(\alpha\), then\((\log \gamma)/(\log \alpha)\)is either rational or transcendental.
  • If the restriction that\(\beta\)be algebraic is removed, the statement does not remain true in general (choose \(\alpha=3\) and \(\beta=\log 2/\log 3\), which is transcendental, then \(\alpha^{\beta}=2\) is algebraic). A characterization of the values for α and β which yield a transcendental αβ is not known.

 

 

베이커의 정리

 

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상