미분형식 (differential forms)과 다변수 미적분학

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 미분형식을 통하여 다변수미적분학의 내용을 새롭게 쓸 수 있다
  • 3차원 공간에 정의된 스칼라함수와 벡터장을 3차원 공간에 정의된 미분형식으로 이해
  • 미분연산자는 미분형식 사이에 정의되는 사상으로 이해할 수 있다


미분연산자

grad

  • 스칼라 함수 \(f\)에 대하여, \(\operatorname{grad}(f) = \nabla f\)는 다음과 같이 정의되는 벡터장이다

\[ \nabla f=( f_x, f_y,f_z) \]

  • 벡터장 \(\nabla f=( f_x, f_y,f_z)\) 를 1-형식 \(f_x\, {d}x + f_y\, {d}y+f_z\,dz\)로 생각하자
  • \(\operatorname{grad}(f) = \nabla f\) 는 스칼라 함수를 1-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다

\[d_0=\nabla : f\mapsto f_x\, {d}x + f_y\, {d}y+f_z\,dz\]

curl

  • 벡터장 \(\mathbf{F}=(F_1,F_2,F_3)\)에 대하여, \(\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F}\) 는 다음과 같이 정의되는 벡터장이다

\[\nabla\times \mathbf{F}=\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}\]

  • \(\mathbf{F}\)를 1-형식 \(F_1dx+F_2dy+F_3dz\), \(\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}\)를 다음과 같은 2-형식으로 생각하자

\[\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy\]

  • 이로부터 curl, \(\nabla\times\) 는 1-형식을 2-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다

\[d_1:F_1dx+F_2dy+F_3dz\mapsto \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy\]

div

  • 벡터장 \(\mathbf{F}=(F_1, F_2,F_3)\)에 대하여, \(\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F}\)는 다음과 같이 정의된 스칼라 함수이다

\[ \nabla \cdot \mathbf{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z} \]

  • 벡터장 \(\mathbf{F}=(F_1, F_2,F_3)\)를 2-형식 \(F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy\)로, 스칼라 함수 \(\nabla \cdot \mathbf{F}\)를 다음과 같은 3-형식으로 생각하자

\[ \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz \]

  • 미분연산자 div는 2-형식을 -3형식으로 보내는 다음과 같은 사상으로 이해할 수 있다

\[ d_2 : F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy \mapsto \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz \]

성질

  • 임의의 스칼라 함수 \(f\)와 벡터장 \(\mathbf{F}\)에 대하여, 다음이 성립한다

\[ \nabla \times (\nabla f)=0\\ \nabla \cdot (\nabla \times \mathbf{F})=0 \]

  • 미분연산자를 미분형식에 정의되는 사상으로 이해하면, 이를 다음과 같이 다시 쓸 수 있다

\[ d_1\circ d_0=d_2\circ d_1=0 \]


1-형식의 적분

  • 곡선 \(C\)의 매개화가 \(\mathbf{r}(t)=( x(t), y(t), z(t)), \quad a\leq t \leq b\)로 주어지는 경우
  • 1-form \(\omega=P\, {d}x + Q\, {d}y+R\,dz\)
  • 곡선 C 위에서 1-형식의 적분은 다음과 같이 정의된다

\[\int_{C}\omega=\int_{a}^{b} \left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt\]

  • 곡선 C 위에서 1-형식\(\omega=P\, {d}x + Q\, {d}y+R\,dz\)의 적분은 벡터장\(\mathbf{F}=(P,Q,R)\)의 선적분과 같다

\[\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{C}\omega\]

증명

\[\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{a}^{b}\mathbf{F}(\mathbf{r}(t))\cdot \mathbf{r}'(t) \, dt=\int_{a}^{b}\left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt=\int_{C}\omega\] ■



2-형식의 적분

  • 3차원의 매개곡면 \(S\), \(\mathbf{r} (u,v)=( x(u,v), y(u,v), z(u,v)),\quad (u,v)\in D\)
  • 2-form \(\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy\)
  • S 위에서 2-형식의 적분은 다음과 같이 정의된다\[\iint_{S}\omega=\iint_D \left[ F_{1} ( \mathbf{r} (u,v))\frac{\partial(y,z)}{\partial(u,v)} + F_{2} ( \mathbf{r} (u,v))\frac{\partial(z,x)}{\partial(u,v)}F_{3} ( \mathbf{r} (u,v)) \frac{\partial(x,y)}{\partial(u,v)} \right]\, du\, dv\]
  • 곡면 S위에서 2-형식 \(\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy\)의 적분은 벡터장\(\mathbf{F}=(F_1,F_2,F_3)\)의 적분과 같다\[\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_{S}\omega\]
증명

다음을 관찰하자 \[{\partial \mathbf{r} \over \partial u}\times {\partial \mathbf{r} \over \partial v}=\left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v))}\right)\] 다음을 얻는다 \[\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_D (F_1,F_2,F_3)\cdot ({\partial \mathbf{x} \over \partial u}\times {\partial \mathbf{x} \over \partial v})\, du\, dv=\iint_{S}\omega\]. ■



응용1. 스토크스 정리

\[\int_S d\omega = \int_{\partial S} \omega\]



관련된 항목들



수학용어번역

  • gradient - 대한수학회 수학용어집



사전형태의 자료



관련논문


관련도서

리뷰, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'differential'}, {'LEMMA': 'form'}]