"바일 지표 공식 (Weyl character formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
4번째 줄: 4번째 줄:
 
\chi_{\lambda}=\sum_{\lambda' \in P} (\dim{V_{\lambda'}})e^{\lambda'}
 
\chi_{\lambda}=\sum_{\lambda' \in P} (\dim{V_{\lambda'}})e^{\lambda'}
 
$$
 
$$
여기서 $V_{\lambda'}$는 $V$의 weight space
+
여기서 $V_{\lambda'}$는 weight $\lambda' \in P$에 대응되는 $V$의 weight space
 
* 바일의 공식
 
* 바일의 공식
:<math>\chi_{\lambda}=\operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}</math><br>
+
:<math>\chi_{\lambda}=\operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}</math>
 
*  또다른 표현:<math>\chi_\lambda=\frac{A_{\lambda+\rho}}{A_{\rho}}</math> 여기서  
 
*  또다른 표현:<math>\chi_\lambda=\frac{A_{\lambda+\rho}}{A_{\rho}}</math> 여기서  
 
:<math>A_{\mu}=\sum_{w\in W}  (-1)^{\ell(w)} e^{w \mu}\in \mathbb{C}[P]</math>
 
:<math>A_{\mu}=\sum_{w\in W}  (-1)^{\ell(w)} e^{w \mu}\in \mathbb{C}[P]</math>
24번째 줄: 24번째 줄:
  
 
==함수로 이해하기==
 
==함수로 이해하기==
* <math>e^{\lambda}\in \mathbb{Z}[P]</math><br>
+
* <math>e^{\lambda}\in \mathbb{Z}[P]</math>
* <math>\mathfrak{h}</math>에 정의된 함수로 생각하면, <math>x\mapsto e^{2\pi i \langle \lambda,x \rangle}</math><br>
+
* <math>\mathfrak{h}</math>에 정의된 함수로 생각하면, <math>x\mapsto e^{2\pi i \langle \lambda,x \rangle}</math>
* <math>\mathfrak{h}^{*}</math>에 정의된 함수로 생각하면, <math>\mu \mapsto e^{2\pi i (\lambda|\mu)}</math><br>
+
* <math>\mathfrak{h}^{*}</math>에 정의된 함수로 생각하면, <math>\mu \mapsto e^{2\pi i (\lambda|\mu)}</math>
*  예<br>
+
*  예
 
** <math>\mu\in \mathfrak{h}^{*}</math> 에 대하여, <math>A_{\rho}(\mu)=\prod_{\alpha>0}(2i)\sin \pi(\mu|\alpha)</math>
 
** <math>\mu\in \mathfrak{h}^{*}</math> 에 대하여, <math>A_{\rho}(\mu)=\prod_{\alpha>0}(2i)\sin \pi(\mu|\alpha)</math>
** <math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{2\pi i(\rho,v)}) = e^{2\pi i(\rho,v)}\prod_{\alpha>0}(1-e^{-2\pi i(\alpha,v)})}</math><br>
+
** <math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{2\pi i(\rho,v)}) = e^{2\pi i(\rho,v)}\prod_{\alpha>0}(1-e^{-2\pi i(\alpha,v)})}</math>
  
  
65번째 줄: 65번째 줄:
  
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
71번째 줄: 71번째 줄:
 
* http://en.wikipedia.org/wiki/Verma_module
 
* http://en.wikipedia.org/wiki/Verma_module
  
 
 
  
==리뷰논문, 에세이, 강의노트==
+
 
 
 
 
  
 
==관련논문==
 
==관련논문==
 
* Bernshtein, I. N., I. M. Gel’fand, and S. I. Gel’fand. 1971. “Structure of Representations Generated by Vectors of Highest Weight.” Functional Analysis and Its Applications 5 (1) (January 1): 1–8. doi:http://dx.doi.org/10.1007/BF01075841.
 
* Bernshtein, I. N., I. M. Gel’fand, and S. I. Gel’fand. 1971. “Structure of Representations Generated by Vectors of Highest Weight.” Functional Analysis and Its Applications 5 (1) (January 1): 1–8. doi:http://dx.doi.org/10.1007/BF01075841.
  
 
 
  
 
[[분류:리군과 리대수]]
 
[[분류:리군과 리대수]]
 
 
 
 
 
 

2014년 2월 3일 (월) 01:17 판

개요

  • \(V=L(\lambda)\) 이면, 캐릭터는 다음과 같이 정의된다

$$ \chi_{\lambda}=\sum_{\lambda' \in P} (\dim{V_{\lambda'}})e^{\lambda'} $$ 여기서 $V_{\lambda'}$는 weight $\lambda' \in P$에 대응되는 $V$의 weight space

  • 바일의 공식

\[\chi_{\lambda}=\operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) }{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}\]

  • 또다른 표현\[\chi_\lambda=\frac{A_{\lambda+\rho}}{A_{\rho}}\] 여기서

\[A_{\mu}=\sum_{w\in W} (-1)^{\ell(w)} e^{w \mu}\in \mathbb{C}[P]\]

  • denominator 항등식

\[{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\prod_{\alpha>0}(e^{\alpha/2}-e^{-\alpha/2})\]

기호

  • P : weight lattice
  • W : Weyl group


군론에서의 지표

  • $h\in \mathfrak{h}$에 대하여, $e^h$는 리군의 원소로 생각할 수 있다

$$\operatorname{tr}e^h=\oplus_{\lambda'}\operatorname{tr}_{V_{\lambda'}}e^h=\oplus_{\lambda'} (\dim{V_{\lambda'}})e^{\lambda'(h)}$$ 이로부터 $$\chi_{\lambda}=\sum_{\lambda' \in P} (\dim{V_{\lambda'}})e^{\lambda'}$$


함수로 이해하기

  • \(e^{\lambda}\in \mathbb{Z}[P]\)
  • \(\mathfrak{h}\)에 정의된 함수로 생각하면, \(x\mapsto e^{2\pi i \langle \lambda,x \rangle}\)
  • \(\mathfrak{h}^{*}\)에 정의된 함수로 생각하면, \(\mu \mapsto e^{2\pi i (\lambda|\mu)}\)
    • \(\mu\in \mathfrak{h}^{*}\) 에 대하여, \(A_{\rho}(\mu)=\prod_{\alpha>0}(2i)\sin \pi(\mu|\alpha)\)
    • \({\sum_{w\in W} (-1)^{\ell(w)}w(e^{2\pi i(\rho,v)}) = e^{2\pi i(\rho,v)}\prod_{\alpha>0}(1-e^{-2\pi i(\alpha,v)})}\)


바일 차원 공식(Weyl dimension formula)

\[\operatorname{dim}(L(\lambda))=\prod_{\alpha>0}\frac{(\lambda+\rho|\alpha)}{(\rho|\alpha)}\]


역사


메모


관련된 항목들


매스매티카 파일 및 계산 리소스


수학용어번역


사전 형태의 자료



관련논문

  • Bernshtein, I. N., I. M. Gel’fand, and S. I. Gel’fand. 1971. “Structure of Representations Generated by Vectors of Highest Weight.” Functional Analysis and Its Applications 5 (1) (January 1): 1–8. doi:http://dx.doi.org/10.1007/BF01075841.