"베일리 격자(Bailey lattice)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 10개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
 
 
* [[베일리 격자(Bailey lattice)]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
* <math>\{\alpha_r\}, \{\beta_r\}</math>를 <em>a</em>에 대한 베일리 쌍이라 하고, 다음을 정의하자.<br><math>\alpha_0'=\alpha_0</math>, <math>\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})</math><math>\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}</math><br>
+
* <math>\{\alpha_r\}, \{\beta_r\}</math>를 <em>a</em>에 대한 베일리 쌍이라 하고, 다음을 정의하자.
* <math>\{\alpha_r'\}, \{\beta_r'\}</math>  는 <math>aq^{-1}</math>에 대한 베일리 쌍이 된다<br>
+
:<math>\alpha_0'=\alpha_0,</math>
 
+
:<math>\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})</math>
 
+
:<math>\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}</math>
 
+
* <math>\{\alpha_r'\}, \{\beta_r'\}</math> 는 <math>aq^{-1}</math>에 대한 베일리 쌍이 된다
 
+
  
<h5 style="line-height: 2em; margin: 0px;">comparison with Bailey chain==
+
==comparison with Bailey chain==
  
 
* [[베일리 사슬(Bailey chain)]]
 
* [[베일리 사슬(Bailey chain)]]
* <math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math><br><math>\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r</math><br>
+
:<math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math>
* This does not change the parameter <em>a</em> of the Bailey pair.<br>
+
:<math>\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r</math>
* lattice construction changes this<br>
+
* This does not change the parameter <em>a</em> of the Bailey pair.
 +
* lattice construction changes this
  
 
+
  
 
+
==corollary==
 
 
<h5 style="line-height: 2em; margin: 0px;">corollary==
 
  
 
Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a. Then the following is true :
 
Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a. Then the following is true :
 
+
:<math>\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2-n_1-n_2-\cdots-n_i}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}=\frac{1}{(a)_{\infty}}\left[\alpha_0+(1-a)\sum_{n=1}^{\infty}(\frac{a^{kn}q^{kn^2-in}\alpha_n}{1-aq^{2n}}-\frac{a^{k(n-1)+i+1}q^{k(n-1)^2+(i+2)(n-1)}\alpha_{n-1}}{1-aq^{2n-2}})\right]</math>
<math>\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2-n_1-n_2-\cdots-n_i}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}=\frac{1}{(a)_{\infty}}\left{[}\alpha_0+(1-a)\sum_{n=1}^{\infty}(\frac{a^{kn}q^{kn^2-in}\alpha_n}{1-aq^{2n}}-\frac{a^{k(n-1)+i+1}q^{k(n-1)^2+(i+2)(n-1)}\alpha_{n-1}}{1-aq^{2n-2}})\right{]}</math>
 
  
 
(proof)
 
(proof)
  
apply Bailey chain construction k-i times  [[베일리 사슬(Bailey chain)]]
+
apply Bailey chain construction k-i times  [[베일리 사슬(Bailey chain)]]
  
 
+
  
 
At the (k-i)th step apply Bailey lattice
 
At the (k-i)th step apply Bailey lattice
45번째 줄: 35번째 줄:
 
Then we get a Bailey pair
 
Then we get a Bailey pair
  
<math>\{\alpha_r'\}, \{\beta_r'\}</math>  is a Bailey pair relative to <math>aq^{-1}</math>.
+
<math>\{\alpha_r'\}, \{\beta_r'\}</math> is a Bailey pair relative to <math>aq^{-1}</math>.
  
 
If we use the defining relation of Bailey pair to <math>\{\alpha_r'\}, \{\beta_r'\}</math>,
 
If we use the defining relation of Bailey pair to <math>\{\alpha_r'\}, \{\beta_r'\}</math>,
 +
:<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>
  
<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>
+
and take the limit <math>L\to\infty</math>
  
and take the limit L\to\infty ■
+
 
 
 
 
  
 
Example. Do this for k=5 and i=2
 
Example. Do this for k=5 and i=2
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">응용==
+
==응용==
  
* [[앤드류스-고든 항등식(Andrews-Gordon identity)]] 의 증명<br>
+
* [[앤드류스-고든 항등식(Andrews-Gordon identity)]] 의 증명
*  initial Bailey pair<br><math>\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math><br><math>\beta_{L}=\delta_{L,0}</math><br>
+
*  initial Bailey pair:<math>\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math>:<math>\beta_{L}=\delta_{L,0}</math>
*  In the corollay above, set a=q and replace i by i-1<br><math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2-n_1-n_2-\cdots-n_{i-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\frac{1}{(q)_{\infty}}\left{[}1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right{]}</math><br>
+
*  In the corollay above, set a=q and replace i by i-1
*  On LHS, we get<br><math>L=\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math><br>
+
:<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2-n_1-n_2-\cdots-n_{i-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right]</math>
*  On RHS, we get<br><math>R=\frac{1}{(q)_{\infty}}\left{[}1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right{]}</math><br><math>=\frac{1}{(q)_{\infty}}\left{[}1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-q^{2n+1}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-q^{2n-1}})\right{]}</math><br> Now use the original Bailey pair,<br><math>\alpha_{n}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})(q)_{n}}{(1-q)(q)_{n}}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})}{(1-q)}</math><br><math>\alpha_{n-1}=(-1)^{n-1}q^{(n-1)(n-2)/2}\frac{(1-q^{2n-1})}{(1-q)}</math><br><math>R=\frac{1}{(q)_{\infty}}\left{[}1+\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}(-1)^{n}q^{n(n-1)/2}}-{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}(-1)^{n-1}q^{(n-1)(n-2)/2}}\right{]}</math><br><math>=\frac{1}{(q)_{\infty}}\left{[}1+(-1)^{n}\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}+{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}\right{]}</math><br>
+
*  On LHS, we get:<math>L=\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math>
*  first part in the summation is<br>  <math>(-1)^{n}\sum_{n=1}^{\infty}{q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n}q^{n(n-1)/2}}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n+n(n-1)/2}}=(-1)^{n}\sum_{n=1}^{\infty}q^{n(2kn+2(k-i+1)+(n-1))/2</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{n((2k+1)n+2k-2i)+1)/2</math><br>
+
*  On RHS, we get
secont part in the summation is<br><math>(-1)^{n}\sum_{n=1}^{\infty}{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+i+1)(n-1)+i}q^{(n-1)(n-2)/2}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in-i+i}q^{(n-1)(n-2)/2}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in}q^{(n^2-3n+2)/2}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-2nk+k+kn-k+n-1+in+\frac{n^2}{2}-\frac{3n}{2}+1)}</math><br><math>=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-nk+in+\frac{n^2}{2}-\frac{n}{2})}</math><br><math>=(-1)^{n}\sum_{n=-1}^{-\infty}q^{kn^2+nk-in+\frac{n^2}{2}+\frac{n}{2})}</math><br><math>=(-1)^{n}\sum_{n=-1}^{-\infty}q^{n((2k+1)n+2k-2i+1)/2}</math><br>
+
:<math>
*  by summing two parts, we get<br><math>R=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math><br>
+
\begin{aligned}
*  Therefore we have proved the following are equal<br><math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math><br>
+
R&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right] \\
*  You can use Jacobi triple product identity to get<br><math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math><br>
+
{}&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-q^{2n+1}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-q^{2n-1}})\right]
 +
\end{aligned}
 +
</math>
 +
Now use the original Bailey pair,
 +
:<math>\alpha_{n}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})(q)_{n}}{(1-q)(q)_{n}}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})}{(1-q)}</math>
 +
:<math>\alpha_{n-1}=(-1)^{n-1}q^{(n-1)(n-2)/2}\frac{(1-q^{2n-1})}{(1-q)}</math>
 +
:<math>
 +
\begin{aligned}
 +
R&=\frac{1}{(q)_{\infty}}\left[1+\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}(-1)^{n}q^{n(n-1)/2}}-{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}(-1)^{n-1}q^{(n-1)(n-2)/2}}\right]\\
 +
&=\frac{1}{(q)_{\infty}}\left[1+(-1)^{n}\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}+{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}\right]
 +
\end{aligned}
 +
</math>
 +
*  first part in the summation is  
 +
:<math>
 +
\begin{aligned}
 +
(-1)^{n}\sum_{n=1}^{\infty}q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n}q^{n(n-1)/2}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n+n(n-1)/2} \\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n(2kn+2(k-i+1)+(n-1))/2} \\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n((2k+1)n+2k-2i)+1)/2}
 +
\end{aligned}
 +
</math>
 +
second part in the summation is
 +
:<math>
 +
\begin{aligned}
 +
(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+i+1)(n-1)+i}q^{(n-1)(n-2)/2}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in-i+i}q^{(n-1)(n-2)/2}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in}q^{(n^2-3n+2)/2}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-2nk+k+kn-k+n-1+in+\frac{n^2}{2}-\frac{3n}{2}+1)}\\
 +
{}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-nk+in+\frac{n^2}{2}-\frac{n}{2})} \\
 +
{}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{kn^2+nk-in+\frac{n^2}{2}+\frac{n}{2})} \\
 +
{}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{n((2k+1)n+2k-2i+1)/2}
 +
\end{aligned}
 +
</math>
 +
*  by summing two parts, we get
 +
:<math>R=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math>
 +
*  Therefore we have proved the following are equal
 +
:<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math>
 +
*  You can use Jacobi triple product identity to get
 +
:<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math>
  
 
+
  
 
+
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모==
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
105번째 줄: 110번째 줄:
 
* [[앤드류스-고든 항등식(Andrews-Gordon identity)]]
 
* [[앤드류스-고든 항등식(Andrews-Gordon identity)]]
  
 
+
   
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
 
 
 
* 단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==관련논문==
 
==관련논문==
  
* Jeremy Lovejoy [http://www.liafa.jussieu.fr/%7Elovejoy/lattice.pdf A Bailey Lattice], Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
+
* Jeremy Lovejoy [http://www.liafa.jussieu.fr/%7Elovejoy/lattice.pdf A Bailey Lattice], Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
 
 
*  David Bressoud, The Bailey lattice, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.<br>
 
*  A. Agarwal, G.E. Andrews, and D. Bressoud, The Bailey Lattice  J. Indian Math. Soc. 51 (1987), 57-73.<br>
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
  
 
+
*  David Bressoud, The Bailey lattice, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
 +
*  A. Agarwal, G.E. Andrews, and D. Bressoud, The Bailey Lattice  J. Indian Math. Soc. 51 (1987), 57-73.
  
==관련도서==
 
  
*  도서내검색<br>
+
[[분류:q-급수]]
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 

2020년 12월 28일 (월) 03:25 기준 최신판

개요

  • \(\{\alpha_r\}, \{\beta_r\}\)를 a에 대한 베일리 쌍이라 하고, 다음을 정의하자.

\[\alpha_0'=\alpha_0,\] \[\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\] \[\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\]

  • \(\{\alpha_r'\}, \{\beta_r'\}\) 는 \(aq^{-1}\)에 대한 베일리 쌍이 된다


comparison with Bailey chain

\[\alpha^\prime_n= a^nq^{n^2}\alpha_n\] \[\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r\]

  • This does not change the parameter a of the Bailey pair.
  • lattice construction changes this


corollary

Let \(\{\alpha_r\}, \{\beta_r\}\) be the initial Bailey pair relative to a. Then the following is true : \[\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2-n_1-n_2-\cdots-n_i}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}=\frac{1}{(a)_{\infty}}\left[\alpha_0+(1-a)\sum_{n=1}^{\infty}(\frac{a^{kn}q^{kn^2-in}\alpha_n}{1-aq^{2n}}-\frac{a^{k(n-1)+i+1}q^{k(n-1)^2+(i+2)(n-1)}\alpha_{n-1}}{1-aq^{2n-2}})\right]\]

(proof)

apply Bailey chain construction k-i times 베일리 사슬(Bailey chain)


At the (k-i)th step apply Bailey lattice

apply Bailey chain construction i-1 times again.

Then we get a Bailey pair

\(\{\alpha_r'\}, \{\beta_r'\}\) is a Bailey pair relative to \(aq^{-1}\).

If we use the defining relation of Bailey pair to \(\{\alpha_r'\}, \{\beta_r'\}\), \[\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}\]

and take the limit \(L\to\infty\) ■


Example. Do this for k=5 and i=2



응용

  • 앤드류스-고든 항등식(Andrews-Gordon identity) 의 증명
  • initial Bailey pair\[\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}\]\[\beta_{L}=\delta_{L,0}\]
  • In the corollay above, set a=q and replace i by i-1

\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2-n_1-n_2-\cdots-n_{i-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right]\]

  • On LHS, we get\[L=\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}\]
  • On RHS, we get

\[ \begin{aligned} R&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right] \\ {}&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-q^{2n+1}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-q^{2n-1}})\right] \end{aligned} \] Now use the original Bailey pair, \[\alpha_{n}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})(q)_{n}}{(1-q)(q)_{n}}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})}{(1-q)}\] \[\alpha_{n-1}=(-1)^{n-1}q^{(n-1)(n-2)/2}\frac{(1-q^{2n-1})}{(1-q)}\] \[ \begin{aligned} R&=\frac{1}{(q)_{\infty}}\left[1+\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}(-1)^{n}q^{n(n-1)/2}}-{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}(-1)^{n-1}q^{(n-1)(n-2)/2}}\right]\\ &=\frac{1}{(q)_{\infty}}\left[1+(-1)^{n}\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}+{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}\right] \end{aligned} \]

  • first part in the summation is

\[ \begin{aligned} (-1)^{n}\sum_{n=1}^{\infty}q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n}q^{n(n-1)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n+n(n-1)/2} \\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n(2kn+2(k-i+1)+(n-1))/2} \\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n((2k+1)n+2k-2i)+1)/2} \end{aligned} \]

  • second part in the summation is

\[ \begin{aligned} (-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+i+1)(n-1)+i}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in-i+i}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in}q^{(n^2-3n+2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-2nk+k+kn-k+n-1+in+\frac{n^2}{2}-\frac{3n}{2}+1)}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-nk+in+\frac{n^2}{2}-\frac{n}{2})} \\ {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{kn^2+nk-in+\frac{n^2}{2}+\frac{n}{2})} \\ {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{n((2k+1)n+2k-2i+1)/2} \end{aligned} \]

  • by summing two parts, we get

\[R=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\]

  • Therefore we have proved the following are equal

\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\]

  • You can use Jacobi triple product identity to get

\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\]



관련된 항목들


관련논문

  • Jeremy Lovejoy A Bailey Lattice, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
  • David Bressoud, The Bailey lattice, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
  • A. Agarwal, G.E. Andrews, and D. Bressoud, The Bailey Lattice J. Indian Math. Soc. 51 (1987), 57-73.