벡터의 외적(cross product)

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 05:45 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 삼차원 유클리드 벡터공간에 정의된 이항연산으로 공간벡터에 대한 기본개념
  • 두 벡터 \(\mathbf{a}, \mathbf{b}\)의 외적 \(\mathbf{a}\times\mathbf{b}\)는 \(\mathbf{a}, \mathbf{b}\)에 각각 수직이며, 크기가 \(|\mathbf{a}| |\mathbf{b}|\sin\theta\)인 벡터가 된다
  • 벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨


정의

  • \(\mathbb{R}^3\)의 단위벡터 \(\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)\)
  • \(\mathbb{R}^3\)의 두 벡터 \(\mathbf a = (a_1, a_2, a_3)\)과 \(\mathbf b = (b_1, b_2, b_3)\)에 대하여, 외적 \(\mathbf{a}\times\mathbf{b}\in \mathbb{R}^3\)는 다음과 같이 정의됨

\[ \begin{aligned} \mathbf{a}\times\mathbf{b}:&=\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \\ {}&=(a_2b_3-a_3b_2,a_3b_1-a_1b_3,a_1b_2-a_2b_1) \end{aligned} \] 여기서 \(\begin{vmatrix}\cdot \end{vmatrix}\)는 행렬식


성질

  • 겹선형성 (bilinearity)
  • \(\mathbf{a}\times\mathbf{b}=-(\mathbf{b}\times\mathbf{a})\)
  • \(\mathbf{a}\cdot(\mathbf{a}\times \mathbf{b}) = \mathbf{b}\cdot(\mathbf{a}\times \mathbf{b})=0\)
  • 라그랑지 항등식 \[|\mathbf{a}\times\mathbf{b}|^{2}+(\mathbf{a}\cdot \mathbf{b})^{2}=|\mathbf{a}|^{2}|\mathbf{b}|^{2}\]
  • 스칼라 삼중곱\[\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}\]
  • 벡터 삼중곱 (라그랑지 공식)\[\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}\]
  • 자코비 항등식\[\mathbf{a}\times (\mathbf{b}\times \mathbf{c})+\mathbf{b}\times (\mathbf{c}\times \mathbf{a})+\mathbf{c}\times (\mathbf{a}\times \mathbf{b})=\mathbf{0}\]



사원수와의 관계

  • 사원수의 곱셈은 3차원 벡터의 내적, 외적과 다음과 같은 관계를 가진다.
  • \(\mathbf{x}=(x_1,x_2,x_3)\) 라 두고, 사원수 \(a+x_1i+x_2j+x_3k\)를 \((a,\mathbf{x)}\)로 쓰자.
  • 다음이 성립한다

\[(a+x_1i+x_2j+x_3k)(b+y_1i+y_2j+y_3k)=(a,\mathbf{x)}\cdot(b,\mathbf{y)}=(ab-\mathbf{x}\cdot\mathbf{y},a\mathbf{y}+b\mathbf{x}+\mathbf{x}\times\mathbf{y})\] 여기서 좌변은 두 사원수의 곱, \(\cdot\,\)은 벡터의 내적,\(\times\,\)는 3차원 벡터의 외적


외적의 일반화

  • 3차원에서 정의되는 외적을 일반적인 \(\mathbb{R}^n\)으로 일반화하는 것은 간단하지 않다
  • 하나의 일반화는 다음에 의해 주어진다
정리

\(n\)차원 유클리드 벡터공간 \(\mathbb{R}^{n}\) 에 정의된 이항연산이 아래의 세 조건을 만족한다면, \(n=1,3,7\) 이 성립한다.

  • 겹선형성(bilinearity)
  • \(\mathbf{a}\cdot(\mathbf{a}\times \mathbf{b}) = \mathbf{b}\cdot(\mathbf{a}\times \mathbf{b})=0\)
  • 라그랑지 항등식 \(|\mathbf{a}\times\mathbf{b}|^{2}+(\mathbf{a}\cdot \mathbf{b})^{2}=|\mathbf{a}|^{2}|\mathbf{b}|^{2}\)
증명

[Massey1983], [Walsh1967] 참조

\(\mathbb{R}^{n}\) 위에 정의된 외적의 공리를 만족시키는 이항연산 \(\times\)가 존재한다고 하자.

그러면 \(\mathbb{R}^{n+1}=\mathbb{R}\oplus\mathbb{R}^{n}=\{(a,\mathbf{x)}|a\in\mathbb{R},\mathbf{x}\in\mathbb{R}^{n}\}\) 위에 다음과 같은 이항연산을 정의할 수 있다. \[(a,\mathbf{x)}(b,\mathbf{y)}:=(ab-\mathbf{x}\cdot\mathbf{y},a\mathbf{y}+b\mathbf{x}+\mathbf{x}\times\mathbf{y})\] 다음의 사실들을 쉽게 확인할 수 있다.

  • 겹선형성(bilinearity)
  • 항등원의 존재 \((1,\mathbf{0)}(a,\mathbf{x)}=(a,\mathbf{x)}(1,\mathbf{0)}=(a,\mathbf{x)}\)
  • 곱셈의 norm 보존 \(|(a,\mathbf{x)}(b,\mathbf{y)}|^2=|(a,\mathbf{x)}|^{2}|(b,\mathbf{y)}|^2\)

그러므로 composition 대수에 대한 후르비츠의 정리(1,2,4,8 과 1,3,7 항목 참조) 로부터 \(n=1,3,7\) 을 얻는다. ■


Levi-Civita 텐서

  • \(1\leq i,j,k \leq 3\)에 대하여 \(\varepsilon_{ijk}\)를 다음과 같이 정의하자

\[\varepsilon_{ijk} = \varepsilon^{ijk} =\begin{cases}+1 & \text{if } (i,j,k) \text{ is } (1,2,3), (3,1,2) \text{ or } (2,3,1), \\-1 & \text{if } (i,j,k) \text{ is } (1,3,2), (3,2,1) \text{ or } (2,1,3), \\\;\;\,0 & \text{if }i=j \text{ or } j=k \text{ or } k=i\end{cases} \]

  • 두 벡터 \(\mathbf a = (a_1, a_2, a_3)\)과 \(\mathbf b = (b_1, b_2, b_3)\)에 대하여 \(\mathbf{a}\times\mathbf{b}=\mathbf{c}=(c_1,c_2,c_3)\)라 두면,\[c_i= \sum_{j=1}^3 \sum_{k=1}^3 \varepsilon_{ijk} a_j b_k\]


리대수 구조

  • 파울리 행렬 의 commutator \(\left[\sigma _i,\sigma _j\right]=2i \epsilon _{i j k}\sigma _k\) 를 이용하면, 다음을 얻는다\[\left[\frac{\sigma _i}{2i},\frac{\sigma _j}{2i}\right]=\epsilon _{i j k}\frac{\sigma _k}{2i}\]

메모


역사

  • Josiah Willard Gibbs published a treatise on vector algebra which included a definition of the vector dot product and vector cross product.
  • 수학사 연표



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cross'}, {'LEMMA': 'product'}]
  • [{'LOWER': 'vector'}, {'LEMMA': 'product'}]