산술 기하 평균 (arithmetic-geometric mean)

수학노트
이동: 둘러보기, 검색

개요

  • 주어진 두 양수 $a,b$에 대하여 다음과 같이 두 수열 \(a_n\)과 \(b_n\)을 정의하자

\[ a_0=a, b_0=b,\\ a_{n+1}=\frac{a_n+b_n}{2},b_{n+1}=\sqrt{a_nb_n} \]

  • 수열 $a_n$과 $b_n$은 같은 수로 수렴하며, 이 때의 극한값 $M(a,b)$을 $a,b$의 산술 기하 평균이라 한다

$$M(a,b):=\lim_{n\to \infty}a_n=\lim_{n\to \infty}b_n$$


  • $M(\sqrt2,1)=1.1981402347355922074\cdots$

$$ \begin{array}{ccc} {n} & a_n & b_n \\ \hline 0 & 1.4142135623730950488 & 1.0000000000000000000 \\ 1 & 1.2071067811865475244 & 1.1892071150027210667 \\ 2 & 1.1981569480946342956 & 1.1981235214931201226 \\ 3 & 1.1981402347938772091 & 1.1981402346773072058 \\ 4 & 1.1981402347355922074 & 1.1981402347355922074 \\ 5 & 1.1981402347355922074 & 1.1981402347355922074 \\ 6 & 1.1981402347355922074 & 1.1981402347355922074 \\ 7 & 1.1981402347355922074 & 1.1981402347355922074 \\ 8 & 1.1981402347355922074 & 1.1981402347355922074 \\ 9 & 1.1981402347355922074 & 1.1981402347355922074 \\ \end{array} $$


매스매티카 파일 및 계산 리소스


관련논문


사전 형태의 자료